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Abstract 

Objective:  We aimed to simplify our fetal RHD genotyping protocol by changing the method to attach Illumina’s 
sequencing adaptors to PCR products from the ligation-based method to a PCR-based method, and to improve its 
reliability and robustness by introducing unique molecular indexes, which allow us to count the numbers of DNA 
fragments used as PCR templates and to minimize the effects of PCR and sequencing errors.

Results:  Both of the newly established protocols reduced time and cost compared with our conventional protocol. 
Removal of PCR duplicates using UMIs reduced the frequencies of erroneously mapped sequences reads likely gener‑
ated by PCR and sequencing errors. The modified protocols will help us facilitate implementing fetal RHD genotyping 
for East Asian populations into clinical practice.
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Introduction
Alloantibodies against Rh antigens represent the main 
cause of hemolytic disease of the fetus and newborn 
(HDFN). The D antigen is the most highly immuno-
genic among Rh antigens. RhD-negative women become 
sensitized to the D antigen and subsequently produce 

anti-D antibodies when they carry an RhD-positive fetus. 
Although anti-D prophylaxis by postnatal and antena-
tal anti-D Ig administration has been highly success-
ful in reducing the incidence of HDFN worldwide [1], 
it is unnecessary for RhD-negative women who carry 
an RhD-negative fetus. Fetal RHD genotyping makes 
it possible to prevent unnecessary anti-D administra-
tion in such pregnancy cases. The fetal RHD genotyp-
ing method widely implemented in western countries is 
designed to detect the presence or absence of the RHD 
wild-type allele of fetal origin in the plasma of RhD-neg-
ative pregnant women, over 99.9% of whom are homozy-
gous for RHD deletion alleles in Caucasian populations. 
Because of relatively high frequencies of RHD-positive 
RhD-negative alleles, RHD*01EL.01 and RHD*01N.04, 
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among RhD-negative individuals (9.0% and 2.9%, respec-
tively, in the Japanese population), the same genotyping 
method was not applicable in East Asian countries. The 
RHD*01EL.01 allele contains a single nucleotide variant 
at the last nucleotide of exon 9 (c.1227G/A), which likely 
disrupts normal splicing [2]. The RHD*01N.04 allele is 
a hybrid allele, in which exons 3–9 of the RHD gene are 
replaced with those of RHCE [3].

We have recently established an amplicon-based non-
invasive fetal genotyping method that distinguishes the 
wild-type RHD allele not only from the RHD-negative 
D antigen-negative allele (the RHD deletion allele), but 
also from RHD-positive D antigen-negative alleles [4]. 
This method requires PCR amplification from four 
genomic intervals, upstream and downstream Rhe-
sus boxes, RHD exon 9, and RHCE exon 9. Because of 
extremely high sequence similarities between two Rhesus 
boxes and between RHD exon 9 and RHCE exon 9, we 
designed two primer pairs to amplify these four regions 
(Fig. 1A, Additional file 1: Fig. S1). One primer pair per-
fectly matches with two genomic intervals, upstream and 
downstream Rhesus boxes, and amplifies 105-bp PCR 
products. The other primer pair also perfectly matches 
with two genomic intervals, RHD exon 9 and RHCE exon 
9 regions, and amplifies 148-bp PCR products. The 105-
bp PCR products contain one base difference that dis-
tinguishes two Rhesus box sequences. The 148-bp PCR 
products contain two base differences that distinguish 
two genes, and also cover the point mutation site in exon 
9 of the RHD*01EL.01 allele (c.1227G/A) that distin-
guishes it from the wild-type allele (RHD*01). Although 
two regions are co-amplified with one primer pair, 
attachment of adaptor sequences to the PCR amplicons 

followed by NGS allowed us to accurately map each of 
the co-amplified sequences to its origin because of the 
one or two base differences between two regions, in the 
data analysis procedure [4].

In this study, we simplified our fetal RHD genotyping 
protocol by changing the adaptor attachment method 
from ligation (Fig.  1B, C) to a one-step PCR (Fig.  1E, 
F). We also evaluated whether introduction of unique 
molecular indexes (UMIs) [5, 6] (Fig. 1H, I) improves the 
quantitative accuracy in measuring the ratios of RHD 
alleles in cfDNA.

Main text
Material and methods
Blood collection and DNA extraction
Cell-free DNA in maternal plasma was extracted using 
the Mag MAX Cell-Free DNA Isolation Kit (Thermo-
Fisher Scientific, A29319) as described previously [4]. 
Individuals with three major RhD-negative genotypes, 
RHD*01N.01/RHD*01N.01, RHD*01N.01/RHD*01.04, 
and RHD*01N.01/RHD*01EL.01 in the Japanese popu-
lation, and those with two RhD-positive genotypes, 
RHD*01/RHD*01 and RHD*01/RHD*01N.01, were iden-
tified as described previously [4].

Preparation of amplicon sequencing libraries by one‑step 
PCR (Fig. 1E, F)
A tailed-forward primer (“Tailed_F”) contains the Illu-
mina forward (P5) adaptor sequence (70 bases) includ-
ing an 8-bp index followed by a target-specific forward 
primer sequence (20 or 22 bases) at the 3′ end (90 or 
92 bases in total). A tailed-reverse primer (“Tailed_R”) 
contains the Illumina reverse (P7) adaptor sequence (66 

Fig. 1  Conventional and newly developed library preparation protocols for amplicon sequencing-based noninvasive fetal RHD genotyping. 
A Genomic organization of the RHD/RHCE locus. Open and closed boxes indicate upstream and downstream Rhesus boxes. Closed and open 
arrowheads indicate PCR primer pairs to amplify 105-bp intervals in Rhesus boxes and 148-bp intervals spanning the exon 9 and the intron 9 of 
RHD and RHCE genes, respectively. Amplicon-seq libraries without UMI can be prepared by our conventional ligation-based protocol (B, C) and 
the one-step multiplex PCR protocol (E, F) established in this study. Amplicon-seq libraries with UMI can be prepared by the newly established 
linear and PCR amplification protocol (H, I). Approximate total and hands-on time (B, E, H), diagrams for experimental procedures (C, F, I), and 
representative electropherograms of intermediate PCR products and/or final libraries (D, G, J) are shown for three protocols. In the panels C, F, 
and I, genomic DNA is shown by a black line; PCR primers that target genomic DNA sequences are shown by blue arrows; adaptor sequences are 
shown in dark/light green/orange; 12-base UMIs are shown in red. Index sequences to de-multiplex sequence reads after sequencing of pooled 
libraries are omitted for simplicity. Panels D, G, and J show representative electropherograms of Rhesus box amplicons (“box”), for RHD/RHCE exon 
9 amplicons (“ex9”), and for multiplex amplification by two pairs of primers (“multiplex”). Horizontal and vertical axes of each electropherogram 
represent fluorescent intensity and DNA size (bp), respectively. Lower and upper marker peaks are present at the positions of 35 bp and 10,380 bp, 
respectively. In our conventional [4] and one-step PCR protocols (C, F), multiplex PCR using two pairs of primers gave rise to specific amplification 
of target genomic intervals (D, G). K A data analysis workflow showing the informatics tools used and their step-by-step functions. L Bam coverage 
tracks of the RHD genotyping results by the one-step PCR protocol (F) for three combinations of the mixtures of genomic DNA (combinations 
#1, #2 and #3 in Additional file 2: Table S2) and for two cfDNA samples (#46 and #59) from RhD-negative pregnant women (Table 1) visualized 
using IGV. The mapped read patterns indicated that the RHD genotypes of the mother (Mo) and the fetus (Fe) were RHD*01N.01/RHD*01N.01 and 
RHD*01/RHD*01N.01, respectively, in both cases. The vertical ranges of mapped read numbers were 0–25,000 for the top three panels, 0–40,000 for 
cfDNA#46, and 0–150,000 for cfDNA#59

(See figure on next page.)
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PCR and adaptor ligation (no UMI)
1. PCR amplification (x30)       90 min 
2. AMPure beads purification    40 min 
3. Bioanalyzer                           70 min 
4. DNA end repairs        75 min 
5. Adaptor ligation        45 min 
6. AMPure beads purification    40 min
7. PCR amplification (x6)          45 min 
8. AMPure beads purification    40 min 
9. Bioanalyzer                           70 min
Time total                                  8.5 h  
Hands-on time total                  4.0 h 

One-Step multiplex PCR (no UMI)
1. PCR amplification (x30)      90 min  
2. AMPure beads purification  40 min 

3. Bioanalyzer                         70 min
Time total                                3.5 h 
Hands-on time total                1.5 h 

Linear&PCR amplification (with UMI)
1. Linear amplification              70 min 
2. PCR amplification (x35)       90 min  

3. AMPure beads purification    40 min 
4. AMPure beads purification    40 min 
5. Bioanalyzer                           70 min
Time total                                   5.5 h 
Hand-on time total                     2.5 h
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Fig. 1  (See legend on previous page.)
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bases) including an 8-bp index followed by a target spe-
cific reverse primer sequence (25 or 29 bases) at the 3′end 
(Additional file  2: Table  S1). PCR was performed with 
2  ng of a mixture of genomic DNA of two individuals 
(or cfDNA) using 0.5 unit of Q5 Hot Start High-Fidelity 
DNA Polymerase (M0493, NEB) according to the man-
ufacturer’s instruction in a 25 µL reaction at the follow-
ing final concentrations: 1 × Q5 reaction buffer, 0.2 mM 
dNTPs, 0.5  µM each of the tailed primers. The thermal 
cycling conditions used were 98  °C for 30  s, 30 cycles 
of 98 °C for 10 s, 64 °C for 30 s, and 72 °C for 30 s, and 
72 °C for 2 min. Twenty out of the 25 µL reactions were 
purified using 0.9 times the volume (18 µL) of Agencourt 
AMPure XP (A63881, Beckman Coulter) and eluted with 
10 µL distilled water. The purified PCR products, i.e., the 
final libraries, were electrophoresed using the High Sen-
sitivity DNA Kit on a 2100 BioAnalyzer (Agilent) to con-
firm their sizes, and subjected to paired-end sequencing 
(151  bp × 2) on a MiSeq system (Illumina) using MiSeq 
Reagent Kit v2 Nano.

Preparation of amplicon sequencing libraries with unique 
molecular identifier (UMI) sequences (Fig. 1H, I)
Cell-free DNA was concentrated using a centrifugal 
evaporator (MicroVac MV-100, TOMY) when necessary. 
Linear amplification was performed in a 23 µL scale reac-
tion consisting of 8 ng of a mixture of genomic DNA of 
two individuals in 10.35 µL, 1.15 µL of 0.4 µM “Tailed_
F1_UMI12” primer (final concentration of 20 pM, Addi-
tional file 2: Table S1), and 11.5 µL of Q5 Hot Start HiFi 
PCR Master Mix (M0543, NEB). The thermal conditions 
for linear amplification were 98  °C for 2  min, 57  °C for 
15  min, 61  °C for 15  min, and 65  °C for 5  min. Subse-
quently, 1.0 µL each of 10 µM “Tailed_F2” and “Tailed_R” 
primers, and 25.0 µL of Q5 Hot Start HiFi PCR Mas-
ter Mix were added to the 23 µL reaction and mixed by 
pipetting. The resultant 50 µL reactions were subjected 
to PCR amplification with the following conditions for 
Rhesus boxes: 98 °C for 1 min; 35 cycles of 98 °C for 10 s, 
64 °C for 30 s, and 68 °C for 45 s; 68 °C for 5 min, and for 
RHD/RHCE exon 9: 98  °C for 1 min; 35 cycles of 98  °C 
for 10 s, 66 °C for 30 s, and 70 °C for 45 s; 70 °C for 5 min. 
Twenty out of the 50 µL reactions were purified using 
0.9 times the volume (18 µL) of Agencourt AMPure XP 
repeated twice, and eluted with 10 µL distilled water. The 
final libraries were electrophoresed and sequenced as 
described above.

Data analysis (Fig. 1K)
For amplicon libraries without UMIs, fastq files were 
generated using bcl2fastq V2.20.0.422 (Illumina), and 
trimmed for adaptor sequences using fastp ver.0.21.0 
[7]. Read 1 and read 2 sequences were merged using 

FLASH ver.1.2.11 [8] with a parameter of “-max-mis-
match-density = 0”, and the merged sequences were 
filtered by their expected size (105 bases for Rhesus 
boxes and 148 bases for RHD/RHCE exon 9) to remove 
reads with unexpected sizes (such as primer dimers and 
PCR artefacts). The merged sequences were mapped to 
the hg19 reference genome using “bwa aln” and “bwa 
samse” commands of bwa-0.7.17 [9]. By using samtools 
-1.4.1 [10], the resultant bam file was sorted in a posi-
tional order and filtered by base quality scores (cutoff 
25) to remove low quality reads, by mapping scores 
(cutoff 23 for Rhesus boxes and 37 for RHD/RHCE 
exon 9) to select uniquely mapped reads. The mapped 
read numbers were counted for each of the four bases 
at each nucleotide position of the amplicons using 
IGVTools_2.3.94 (https://​softw​are.​broad​insti​tute.​org/​
softw​are/​igv/​igvto​ols) (igvtools count-w 1-bases), and 
output as a.wig file. Subsequently, the numbers of G 
at chr1:25,592,628 and of A at chr1:25,662,955 were 
extracted as read counts of the upstream and the down-
stream Rhesus boxes, respectively. The numbers of G 
and A at chr1:25,648,453 as the read counts of the wild-
type allele and the c1227G > A allele of RHD exon 9, and 
the number of C at chr1:25,696,958 as the read count 
of RHCE exon 9 were extracted. The mapping results 
were further examined for the existence of unexpected 
variants or potential sequence errors by visualizing 
the bam file data for four regions corresponding to the 
amplicons using IGV (https://​softw​are.​broad​insti​tute.​
org/​softw​are/​igv/), and by inspecting the minor allele 
frequency of each nucleotide position of the amplicons 
using the text data (.wig file) generated by IGVTools. 
For amplicon libraries with UMIs, fastq generation, 
adaptor trimming, and merge of paired reads were 
performed as described above. The resultant merged 
sequences were further processed with AmpUMI.py 1.2 
[6] to remove PCR duplicate reads using 12-base UMI 
sequences located at the beginning of the original read 
1. The sequence reads after removing PCR duplicates 
were further processed as described above.

The.wig file data were used to calculate the ratio of the 
read number containing the bases other than the refer-
ence base to the total read number at a single nucleo-
tide (i.e., error ratio). These read numbers were initially 
counted for each nucleotide of the four amplicon regions 
(upstream and downstream Rhesus boxes, RHD exon 9, 
and RHCE exon 9). Error ratios were subsequently cal-
culated using the total numbers for the positionally iden-
tical bases between the upstream and downstream at 
Rhesus box amplicons (for 105 positions) and between 
RHD exon9 and RHCE exon 9 amplicons (for 147 posi-
tions excluding the position of the c.1227A > G variation 
at chr1: 25,648,453).

https://software.broadinstitute.org/software/igv/igvtools
https://software.broadinstitute.org/software/igv/igvtools
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
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Results and discussion
We established one-step PCR conditions (Fig. 1E–G) and 
tested on twelve combinations of genomic DNA mixtures 
of two individuals (A and B) at a 10:1 ratio, which served 
as approximation models of cfDNA from RhD-negative 
pregnant women. “A” corresponds to the mother and is 
any of three RhD-negative genotypes (RHD*01N.01/
RHD*01N.01, RHD*01N.01/RHD*01EL.01, or 
RHD*01N.01/RHD*01N.04), and “B” corresponds to the 
fetus and is any of four genotypes (one RhD-positive 
genotype [RHD*01/RHD*01N.01] or three RhD-negative 
genotypes). These twelve combinations cover 93.6% of 
possible genotype combinations of a fetus and an RhD-
negative pregnant woman in the Japanese population. 
The observed ratios of amplicons from Rhesus boxes and 
from RHD/RHCE exon 9 were mostly consistent with 
the expected ratios (Additional file 2: Table S2). The reli-
ability for estimating the fetal RhD type of the newly 
established one-step PCR protocol was confirmed to 
be comparable with that of the conventional protocol 
(Fig. 1B–D) [4]. Examples of mapped read data visualized 
by IGV are provided (Fig. 1L).

UMIs have been used to confidently detect PCR dupli-
cates in NGS applications [6], and have been shown to 
reduce sequencing error rates and to increase analytical 
specificity in various studies, including those for NIPT 
[11, 12]. We established linear and subsequent expo-
nential amplification conditions to introduce 12-base 
UMIs to the amplicon libraries (Fig. 1H–J), and tested 
the protocol on the twelve combinations of genomic 
DNA mixtures described above (Additional file  2: 
Table S3). The results we obtained by the UMI protocol 
with our standard filtering conditions were almost com-
pletely free of erroneous reads, and were not suitable to 
assess the efficacy of UMI to reduce errors. When we 
analyzed the same dataset with less stringent filtering 
conditions, we confirmed that the UMI-based removal 
of PCR duplicates lowered the ratio of erroneous reads 
for the majority of cases (data not shown). We observed 
a stronger tendency of the amplification bias towards 
RHCE exon 9 over RHD exon 9 in the dataset by the 
linear & PCR amplification protocol (Additional file 2: 

Table S3) than that by one-step PCR (Additional file 2: 
Table  S2). Further optimization of the linear and the 
PCR amplification conditions is required to minimize 
the observed amplification biases.

PCR and sequencing errors are inherent in the cur-
rent NGS technologies [13]. We calculated the ratios 
of such errors presumably generated during library 
preparation and sequencing procedures and retained 
after applying read filtering conditions in the data anal-
ysis procedure. When the mapped read data of twelve 
samples in Additional file  2: Table  S2 were analyzed, 
the highest error ratios were 0.06% and 0.11% for Rhe-
sus box amplicons and RHD/RHCE exon 9 amplicons, 
respectively (Additional file 1: Fig. S2). Although poten-
tial PCR or sequencing errors at the nucleotide posi-
tions to distinguish the origin of each sequence read 
were observed at low frequencies, as shown in red in 
Table 1, Additional file 2: Tables S2 and S3, their ratios 
were below the calculated background levels except for 
one case (0.19%) detected for the fourth combination 
of genomic DNA mixture (Additional file 2: Table S2). 
Such a high error ratio indicates the possibility of 
carry-over contamination from previous PCR assays. 
UMI is expected to be useful as a means to remove such 
contaminated reads.

In NIPT methods, fetal fraction (FF), the ratio of 
fetal DNA in cfDNA in maternal plasma, has been rec-
ognized as the most critical factor for their diagnostic 
accuracy [14]. The sensitivity of trisomy 21 detection 
dropped from 99 to 75% when FF was below 8% [15]. 
In our method, when the RHD*01 allele is detected in 
cfDNA from maternal plasma, it determinately dem-
onstrates that the fetus is RhD-positive. On the other 
hand, when the RHD*01 allele is undetected, it leaves 
two possibilities, namely, that the fetus is RhD-negative 
and homozygous for the RHD deletion (RHD*01N.01) 
allele, or that the assay failed to detect an RhD-
positive allele of the fetus due to a low FF. Accurate 
determination of the target molecule number in a geno-
typing PCR reaction through UMI-based removal of 
PCR duplicates helps us better presume which one of 
the possibilities is more likely.

Table 1  Mapped read ratios of one-step PCR amplicons from cell-free DNA of RhD-negative pregnant women

The gestational week of blood sampling is shown in parentheses

Cell-free DNA from a RhD-negative pregnant woman Amplicons from Rhesus boxes 
(Primers: RHbox_Tailed_F/R)

Amplicons from RHD/RHCE exon 
9 (Primers: RHD/RHCE_exon9_
Tailed_F/R)

Observed ratio and read counts 
(upstream/downstream)

Observed ratio and read counts 
(RHD_wt/RHD_var/RHCE)

Cell-free DNA #46 (8 weeks) 1.88%/98.12% (416/21,694) 1.33%/0%/98.67% (281/0/20,914)

Cell-free DNA #59 (28 weeks) 3.60%/96.40% (813/21,754) 2.05%/0.002%/97.95% 
(1,253/1/59,758)
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Limitations
The limitation of our amplicon-sequencing-based fetal 
RHD genotyping is that the method by itself cannot 
determine FF, which is common to all amplicon-based 
NIPT methods. To complement this limitation, we plan 
to adopt an amplicon-sequencing method for multiple 
SNPs [16] when FF of a cfDNA sample needs to be pre-
cisely determined.

Abbreviations
cfDNA: Cell-free DNA; HDFN: Hemolytic disease of the fetus and newborn; 
PCR: Polymerase chain reaction; NGS: Next generation sequencing; UMI: 
Unique molecular identifier; NIPT: Non-invasive prenatal testing; FF: Fetal 
fraction.
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Additional file 1: Figure S1. Genomic organization of the RhD-positive 
allele (RHD*01) and three major RhD-negative alleles (RHD*01N.01, 
RHD*01EL.01, and RHD*01N.04). The genomic positions of PCR prim‑
ers targeted for Rhesus boxes (closed arrowheads) and for the exon 9 
regions of the RHD and RHCE genes (open arrowheads) are shown for 
each allele. The nucleotide bases that distinguish the amplicons from 
the upstream and the downstream Rhesus boxes (G at chr1:25,592,628 
and A at chr1:25,662,955) are shown. The nucleotide bases that distin‑
guish the amplicons from RHD exon 9 and RHCE exon 9 region (A at 
chr1:25,648,419 and A at chr1:25,648,515 in the RHD exon 9 region, and T 
at chr1:25,696,992 and G at chr1:25,696,896 in the RHCE exon 9) are also 
shown. The red vertical bar shown in the RHD*01EL01 allele represents 
the c.1227A>G variation at chr1:25,648,453. Figure S2. Error ratio plots for 
Rhesus boxes (A) and RHD/RHCE exon 9 (B). Error ratios, ratios of the read 
number containing the bases other than the reference base to the total 
read number, were calculated using the total numbers for the positionally 
identical bases between the upstream and downstream at Rhesus box 
amplicons (for 105 positions) and between RHD exon9 and RHCE exon 9 
amplicons (for 147 positions excluding the position of the c.1227A>G vari‑
ation at chr1: 25,648,453). The results for twelve each amplicon libraries for 
Rhesus boxes (A) and RHD/RHCE exon 9 (B) prepared by the one-step PCR 
protocol (without UMI) (Table S2) were shown. For each nucleotide posi‑
tion, the maximum ratio, the median ratio, and the minimum ratio among 
twelve libraries are shown in dots (in red, black, and blue, respectively). 
The gray-shaded regions (nt 1 to 20 and nt 81 to 105 for Rhesus boxes and 
nt 1 to 22 and nt 120 to 148 for RHD/RHCE exon 9) correspond to PCR 
primer sequences. Because of the higher error rates consistently observed 
in the primer regions than in the internal region, the primer regions were 
excluded for further analyses. The highest error ratio detected in each 
type of amplicons is indicated by arrow: 0.060% at nt 37 for Rhesus boxes 
amplicons and 0.116% at nt 40 for RHD/RHCD exon 9 amplicons. The 
median error ratios for the Rhesus box amplicons (nt 21 to 80) ranged from 
0.00% to 0.032% and those for the RHD/RHCE exon 9 amplicons (nt 23 to 
119) ranged from 0.00% to 0.030%.

Additional file 2: Table S1. List of primers. Table S2. Expected and 
observed ratios of one-step PCR amplicons from the 12 combinations 
of the 10:1 mixture of genomic DNAs (A and B). Table S3. Expected and 
observed ratios of UMI-attached amplicons from the 12 combinations of 
the 10:1 mixture of genomic DNAs (A and B).
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