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Abstract 

Objective:  Athletic performances are dynamic movements that are physically challenging and often predict 
individual success in ecological contexts. They stem from a complex integration of multiple phenotypic traits—e.g., 
morphological, physiological and behavioural—that dictate animal survival and individual fitness. However, directly 
quantifying athletic performances can be particularly challenging in cryptic, slow-moving species or not very reactive 
in attitude. Here we present and describe a rapid, simple, and low-cost method to measure athletic performance in 
post-metamorphic individuals of the fire salamander Salamandra salamandra. While extremely reactive during the 
larval stage, adult salamanders are, in fact, cryptic and relatively slow-moving.

Results:  Forcing terrestrial juveniles to swim under standard, albeit ecologically plausible, laboratory conditions, and 
using an automatic point-mass tracking tool, we were able to measure maximal and average performance indicators 
of post-metamorphic individuals. This method avoids inter-individual variation in motivation, as it forces individuals 
to perform at their best. Moreover, with this method, measures of athletic performance will be directly comparable 
between larval and terrestrial stages, allowing to study the contribution of carryover effects to the wide range of 
processes implicated in the eco-evo-devo of athletic performance in salamanders.
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Introduction
Athletic performances are key abilities in animals’ life 
since they predict individual success in ecological con-
texts [1, 2]. They consist of dynamic movements that 
are physically challenging, allowing animals to interact 
with other conspecific and heterospecific organisms, 
and with the physical environment [1–3]. These abilities 
stem from a complex integration of multiple phenotypic 
traits – e.g., morphological, physiological and behavioural 
–, that dictate animal survival and fitness in a wide range 
of contexts [2–4]. Consequently, the comparative study 
of maximal individual performances in athletic tasks can 
offer an excellent window on the diversity and evolution 
of functional phenotypic traits within and among species, 

and on the role of athletic abilities in moulding the evo-
lutionary pathways of intra- and interspecific lineages 
in response to significant changes of their physical and 
biotic environment [5–8].

Among athletic abilities, locomotor performance has 
been extensively studied, due to its direct implication 
in a wide range of ecological tasks, such as predator 
escape, prey capture, territory defence, reproductive 
success, dispersal, and so forth [1, 3, 6, 9, 10]. Tradi-
tionally, the bulk of studies investigating the evolution 
of locomotor traits have been focused on analysing 
the origin (e.g., convergent vs independent) and the 
evolutionary trends in animal locomotion along the 
tree-of-life [1 and reference therein]. However, more 
recently, increasing attention is being focused on study-
ing inter-individual differences in locomotor perfor-
mances within and among populations within species 
[11–13]. In fact, there is an increasing awareness that 

Open Access

BMC Research Notes

*Correspondence:  bisconti@unitus.it
Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. 
Viale Dell’Università S.N.C, 01100 Viterbo, Italy

http://orcid.org/0000-0002-0600-7436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-021-05808-0&domain=pdf


Page 2 of 6de Rysky et al. BMC Res Notes          (2021) 14:399 

athletic abilities can contribute to shaping the eco-evo-
lutionary processes implicated in the genesis of biogeo-
graphic patterns both above and below the species level 
[14–16]. Among vertebrates, much research effort has 
been devoted to the study of athletic abilities in the liz-
ards of the genus Anolis [17–19] and cane toad Rhinella 
marina [15, 20–23]. The integrative analysis of jumping 
performances in these study systems (based on biome-
chanical, physiological, and morphometric traits; [22, 
24]) highlighted an unexpected amount of inter-indi-
vidual diversity in performance abilities and suggested 
a major role of these abilities in shaping the evolu-
tion both of dispersal capacities and the species range, 
over multiple spatial and temporal scales [19, 22, 23, 
25]. As a result, increasing insights on the eco-evolu-
tionary role of inter-individual differences in animal 
performances traits are coming from this kind of stud-
ies. However, performing experimental studies can be 
in many cases hampered by species-specific lifestyles, 
such as in species that are cryptic and tend not to react 
impulsively to external stimuli. In these species, iden-
tifying and directly quantifying genuinely informative 
athletic performance traits could be challenging.

The European fire salamander Salamandra salaman-
dra (Fig.  1A) is a urodele amphibian widely distributed 
across much of the Western Palaearctic, where it inhab-
its mixed, moist deciduous forests from the sea level 
up to 2500 m [26, 27]. It is a nocturnal and crepuscular 
dweller, mostly active on rainy nights, spending daytime 
under moisty woods, stones or the leaflitter [26]. After 
the metamorphosis, the fire salamander becomes strictly 
terrestrial, and only females approach water to lay lar-
vae. In the adult phase, this species shows a distinctively 
cryptic lifestyle, making the study of maximal locomotor 
performance quite difficult. Therefore, when found above 
ground its movements are slow and, even when stimu-
lated by a (natural or mimicked) predator, its defensive 
behaviour is rather static, characterized by remaining 
motionless, usually without attempting to escape preda-
tor attacks (it possesses antipredator toxin secretions) 
[28–31]. Nevertheless, measuring maximal locomotor 
performances is of crucial importance because they are 
directly implicated in the survival of individuals for prey 
capture, reproductive success, and dispersal ability.

Here we present a simple, rapid and low-cost method 
to accurately  quantify athletic performance abilities in 
post-metamorphic fire salamanders. We aim to provide 
a test that could force this cryptic, and apparently unre-
active species, to perform at its extreme limit, allowing 
the analysis of athletic performance to become part of the 
extensive body of literature concerning patterns of phe-
notypic diversity, distribution, and evolution in this spe-
cies [32, 33].

Main text
Methods
Sampling and housing
We collected 78 fire salamander individuals at larval 
stage immediately after deposition to standardise the 
entire experimental procedure. With this aim, we moni-
tored breeding sites in the Picentini Mts. (Campania 
Region, Italy) between March and June in 2019, when the 
larvae laying usually occurs [27]. Larvae were collected 
from distinct breeding sites placed at least 20–50  m 
from each other, in order to avoid kinship relationships 
among individuals. All the breeding sites consisted in 
small ponds along small streams characterized by low-
slope and low water velocity/turbulence located in beech 
forests at around 1000  m of altitude. Collected larvae 
were individually housed under controlled and standard 
conditions [34]  in a humid chamber (room tempera-
ture 18–20° C, humidity 65–70%, natural photoperiod: 
12–15  h daylight/dark following natural seasonality) at 
the facilities of the Department of Ecological and Biologi-
cal Sciences of the University of Tuscia (Viterbo, Lazio, 
Italy). Salamander larvae were individually housed within 
pierced plastic baskets (10 × 10 × 10 cm), each with a ter-
racotta saucer as shelter. All plastic baskets were placed 
collectively within a PVC tank filled with aerated soft 
water (dechlorinated and demineralized water 1:1) and 
water temperature (10–12  °C) monitored using a tem-
perature data logger (Hobo Pendant MX2201). Larvae 
were fed  ad libitum  three days a week with live tubifex 
and chironomid larvae. Once metamorphosed, each sala-
mander was housed individually into terrariums made 
with transparent and micro-perforated plastic boxes 
(11.5 × 11.5 × 6  cm), with coconut litter and gravel as 
substrates, a plastic cap containing dechlorinated water, 
and a piece of cork bark as shelter. Metamorphosed juve-
niles were fed  ad libitum  with crickets (Acheta domes-
tica) and mealworms (Tenebrio molitor).

Athletic performance test
A convenient approach to analyse athletic performance 
in animals consists of measuring maximal movement 
performance in response to a stimulus that is perceived 
as threatening, usually cues of a predator attack [e.g., 
35–37]. We performed a series of pilot tests on a group of 
non-experimental animals (10 individuals) in an attempt 
to elicit propelling movements. However, even the more 
invasive version of these tests (i.e., tail pinching) did not 
elicit consistent and repeatable responses. Most indi-
viduals did not react at all, while a few others jumped, 
u-turned, or sprinted, and the responses were not repeat-
able over multiple trials. Based on that result, we moved 
to test individual response to another common threat 
in fire salamander environments: falling into the water. 
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As mentioned above, adult fire salamanders are fully 
terrestrial. Accidental falls into the water may be fatal, 
unless the shore is reached promptly. Preliminary trials 
revealed a consistent response of salamanders to swim-
ming challenges, which is necessary to reflect individual 
differences.

Swimming performance was measured once for each 
individual at three months after the metamorphosis to 
ensure the performance being representative of a fully 
terrestrial life stage. Swimming tests were carried out 
under strictly controlled environmental conditions (room 

temperature 20  °C, humidity 70%; water temperature 
15 °C) since variability in these conditions might impact 
individual performance during the test.

The experimental arena consisted of a white circu-
lar plastic tank (diameter: 100  cm; water volume: 50L; 
water depth: 6.5 cm; see Fig. 1B) to avoid possible “blind 
spots”, where individuals may get stuck or have a foot-
hold to climb out of the water. To standardise the starting 
phase of the test, when the individuals were released in 
the tank, the centre of the arena was marked with a small 
plastic circle placed 1 cm above the water surface. Thus, 

Fig. 1  A The fire salamander Salamandra salamandra (Photo: Grignani G.). B The arena used for the swimming test (salamander is not in scale). C 
Swimming force profile of an individual as a representative example (black line: raw data; grey line: moving average)
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each individual was gently dropped into the water from 
the centre of this “launchpad”, using a humid spoon. Test 
duration was set to 2  min. At the end of the test, indi-
viduals were weighted with a precision analytical scale 
(± 0.001  g) to calculate the acceleration force. All indi-
viduals were fasted 48 h before the tests.

Swimming performance tests were video recorded at 
high frame rates (120 fps), using a GoPro Hero5 camera 
(at 1080p) placed above the centre of the experimen-
tal arena. Videos were then analysed with the software 
Tracker 5.1.3 (https://​physl​ets.​org/​track​er). This software 
allows characterising physical properties of animal move-
ments using automatic point-mass tracking, if high-qual-
ity videos are used as input (i.e., enough contrast between 
tracked objects and the background), together with a 
measure of the body mass and a known reference scale. 
We used the tip of the salamander snout as a point mass 
for tracking and manually set the body mass for each 
individual and calibrate the scale by setting the diameter 
of the tank as reference scale. Tracker allows extracting a 
wide range of performance variables. For illustrative pur-
poses, here, we provide maximum and average values of 
velocity and acceleration. Potential errors in automatic 
tracking were checked by eye for  each individual by the 
same operator.

Results and discussion
All the  analysed individuals started swimming imme-
diately after the dive, and continued swimming on the 
water surface until they reached the edge of the tank 
(Fig. 1C; Table 1; Fig. 2; an additional movie file shows 
this in more detail [see Additional file 1]). This behav-
ioural pattern has at least two highly desirable features 
when testing athletic performances: (1) complete inter-
individual consistency; (2) a bi-axial configuration 
of the entire athletic movement. Consistency of the 
behavioural pattern is essential, as it implies that indi-
vidual personality does not modulate an individual’s 

tendency to perform the athletic task at its best, and 
so it does not act as a confounding experimental factor 
[2, 38–40]. This argument receives further support by 
observing that maximum acceleration values are usu-
ally reached at the beginning of the test, which is not 
expected in case personality (e.g., shy vs bold response 
to a stressful situation) play a significant role affect-
ing motivation. Furthermore, the bi-axial configura-
tion of the movement over the water surface allows 
ignoring the third (i.e., vertical) axis when deriving 
acceleration and other physical descriptors of the ath-
letic performance, simplifying the experimental setup 
substantially.

Once individuals reached the edge of the tank, the 
behavioural pattern changed significantly, towards a 
heterogeneous alternation of resting at the edge, swim-
ming and floating phases. Moreover, over multiple test-
ing, consistency of the pattern was observed neither 
among nor within individuals, which qualifies this sec-
ond segment of the test as useless for our purposes. It 
is worth noting that this second segment implies that 
endurance measures cannot reliably be derived from 
this test, and the test duration could be reduced from 
2 to 1  min for future use. At the same time, however, 
this diverse mix of multiple phases might reveal dis-
tinct behavioural types along the second segment of 
the test. If and to what extent behavioural patterns 
along this segment (e.g., frequency and/or time spent in 
each phase) might associate with individual personality 
traits could be an intriguing subject for future experi-
mental scrutiny, given the inherent difficulties in study-
ing personality traits variation in highly cryptic and 
rather static species.

Measuring animals’ athletic performances in cryp-
tic, slow-moving, or difficult-to-track animals could be 
very challenging [1]. Here, we have described a rapid, 
simple, and low-cost method to measure athletic per-
formance in fire salamanders under standardized, albeit 
environmentally realistic, laboratory conditions. By forc-
ing individuals to perform in the aquatic environment, 
this method successfully avoids the lack of motivation, 
in line with results obtained with similar approaches in 
other organisms (e.g., in rodents, [41, 42]). Finally, a point 
of significant value of the approach presented here stems 
from the possibility of gaining comparable athletic per-
formance measures between larval and terrestrial stages. 
Indeed, when in the aquatic medium, post-metamorphic 
salamanders show a swimming pattern matching the one 
used by larvae. In light of this, our test will allow us to 
investigate the contribution of carryover effects across 
life stages to the wide range of processes implicated in 
the eco-evo-devo of athletic performance in salamanders 
[43].

Table 1  Maximum (Max) and mean values of speed and 
acceleration, and mean time to reach the edge of the 
experimental arena, measured for the post-metamorphic 
individuals of Salamandra salamandra analysed

Variable Mean ± S.E

Max speed (cm/s) 34.21 ± 1.63

Mean speed (cm/s) 19.19 ± 0.45

Relative max speed (g/s) 0.07 ± 0.01

Relative mean speed (g/s) 0.13 ± 0.01

Max swimming force (N) 3949.81 ± 237.23

Mean swimming force (N) 1628.21 ± 125.63

Mean time to reach the edge (s) 3.68 ± 0.39

https://physlets.org/tracker
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Limitations

•	 The method does not allow to measure the endur-
ance of locomotor effort.

•	 The automatic tracking of the focal subject is only 
applicable when high-quality videos are used as input 
(i.e., enough contrast between tracked objects and 
the background).

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13104-​021-​05808-0.

Additional file1: Video-tracking of the swimming performance test of 
a post-metamorphic fire salamander Salamandra salamandra, obtained 
by using Tracker 5.1.3.
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