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Abstract 

Objective:  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe 
respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province 
in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of 
post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus 
replication as well as expression of various viral proteins. Dicer, Drosha, Ago2, and DGCR8 are essential components of 
the RNAi system, which is supposed to be dysregulated in COVID-19 patients. This study aimed to assess the expres-
sion level of the mentioned mRNAs in COVID-19patients compared to healthy individuals.

Results:  Our findings demonstrated that the expression of Dicer, Drosha, and Ago2 was statistically altered in COVID-
19 patients compared to healthy subjects. Ultimately, the RNA interference mechanism as a crucial antiviral defense 
system was suggested to be dysregulated in COVID-19 patients.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a novel coronavirus responsible for severe 
respiratory disease (COVID-19). The virus was first iden-
tified in Wuhan, Hubei, China, in 2019 and spread world-
wide. After the Chinese epidemic peak, other countries, 
especially South Korea, Italy, and Iran saw a significant 
spread of the disease. [1–3]. SARS‐CoV‐2 categorized in 
beta-coronaviruses lineage and is closely related to the 
SARS‐CoV virus [4, 5]. The respiratory system and lungs 
are most susceptible to damages resulting from the virus 

that leads to failed functions of the respiratory system, 
severe acute pulmonary disorders, and consequent mor-
tality [6, 7]. Coronavirus is capable of producing double-
stranded RNA (dsRNA) during the infection cycles. Host 
cell pattern recognition receptors (PRRs) could distin-
guish viral dsRNA as a foreign pathogen and respond to 
them by activating several antiviral pathways such as the 
RNA interference (RNAi) mechanism that is critical for 
early defense against viral invasion [8]. RNAi is a mecha-
nism of post-transcriptional gene silencing in eukary-
ote and human cells, that inhibit virus replication and 
expression of various viral proteins. The RNAi system as 
an innate immunity pathway is mainly mediated by two 
non-coding molecules, including microRNA (miRNA) 
and small interfering RNA (siRNA) [9]. miRNA biogene-
sis involves Drosha, Dicer and RNAase III proteins, while 
siRNA processing is exclusively associated with Dicer 
function. Initially, endogenous or exogenous dsRNAs 

Open Access

BMC Research Notes

*Correspondence:  M_salehi@med.mui.ac.ir; lotfi.hajie@yahoo.com
1 Cellular, Molecular and Genetics Research Center, Isfahan University 
of Medical Sciences, 8175954319 Isfahan, Iran
9 Department of Medical Biotechnology, Faculty of Advanced Medical 
Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6565-0907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-021-05816-0&domain=pdf


Page 2 of 7Mousavi et al. BMC Res Notes          (2021) 14:401 

bounds to form siRNA or miRNA-induced silencing 
complex (RISC). The most critical component of these 
complexes is argonaute RISC catalytic component (AGO) 
proteins, Ago2 in particular. Using a guide RNA strand, 
the RISC complex could eighter suppress the mRNA 
translation or degrade the mRNA by Ago slicer activity 
[10]. Identification of exogenous dsRNAs through PRRs 
results in the generation of siRNAs (21—25nt in length) 
mediated by Dicer. One of the siRNA strands bound the 
RISC complex RISC and cleaves the target mRNA [11]. 
Similarly, during viral infection, the dsRNA of the viruse 
is cleaved by Dicer to generate siRNAs, which finally tar-
get the complementary viral RNA [12]. The RNAi mecha-
nism could inhibit different types of virus infections such 
as rotavirus [13], influenza virus [14], and HIV-1[15, 16]. 
Moreover, siRNA duplexes could effectively reduce the 
expression of SARS-CoV genes [9]. In addition, viruses 
are able to encode specific suppressive proteins, which 
could disrupt the RNAi-mediated host defense. Thus, the 
balance between host RNAi components and RNAi viral 
inhibitors could determine disease outcomes [17]. In 
spite of recent advances in the development of vaccines 
against SARS-CoV-2, it is still remaining one of the major 
healthcare challenges worldwide. Thereby, providing 
detailed insights into the molecular pathogenesis mecha-
nism is highlighted. Dicer, Ago2, DGRC8, and Drosha are 
the four critical components of RNAi system involved in 
the innate antiviral defense. To the best of our knowledge, 
no study has been reported on the RNAi mechanism dys-
regulation in COVID-19 patients. Therefore, here the 
expression levels of these genes were evaluated to predict 
the probable dysregulation of this pathway resulted from 
COVID-19.

Main text
Materials and methods
In silico analysis: Gene Ontology protein–protein interaction 
(PPI) network analysis
To find the probable molecular roles of the selected 
genes, gene ontology analysis was carried out by 
Cytoscape ClueGO plug-in [18]. Further, to predict the 
correlation and interaction of genes expression levels, 
PPI network was depicted through string database [19] 
and Cytoscape string plug-in [20].

Sampling
A case group consisted of 20 COVID-19 patients and 
20 healthy individuals recruited from Alzahra Hospi-
tal (Isfahan, Iran). Patients were hospitalized in inten-
sive care unit (ICU) with severe symptoms and their 
status were diagnosed by an infectious specialist. The 
selected patients had severe symptoms with no history 
of an underlying disease and autoimmune disorders. The 

characteristics of patients are mentioned in Additional 
file 1: Table S1.

RNA extraction
Total RNA was extracted from whole blood using RNA 
Extraction-Kit (Favor-Prep, Blood/Cultured Cell Total 
RNA. Taiwan). The quality of RNA was measured at 
260/280 nm by a NanoDrop spectrometer (Thermo Sci-
entific, Waltham, MA, USA).

Complementary DNA (cDNA) synthesis
According to the manufacturer’s protocol, cDNA syn-
thesis was performed using a BioFACT RT-Kit (Biofact, 
Korea) and stored at − 20 °C until the next step.

Quantitative real‑time PCR (qPCR)
Real-time PCR were performed using SYBR Green 
master mix (Biofact. Korea) and specific primers con-
ducted on Rotor-Gene 6000 instrument (Corbett 
Life Science, Mortlake, Australia) as follow: 95  °C for 
15  min followed by 40 cycles of 95  °C for 20  s, 60  °C 
for 30  s and 72  °C for 30  s. The sequences of primers 
are listed in Additional file  1: Table  S2. The data was 
analyzed using the 2−ΔΔCT method. The glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) used as internal 
references gene.

Statistical analysis
To analyze the expression levels of genes between two 
groups, the unpaired parametric t-test and the nonpar-
ametric Mann–Whitney test were used. All results are 
presented as mean ± SD (standard deviation), P ≤ 0.05 
was considered statistically significant, and analysis was 
done by GraphPad Prism version 8.0.2 (Graph Pad, San 
Diego, CA, USA).

Results
In silico analysis: gene ontology and PPI network analysis
Analyzing gene ontology and signaling pathways 
indicated that the Dicer, Ago2, Drosha, DGCR8 are 
involved in RNAi, miRNA biogenesis, and double-
strand RNA binding mechanisms (Fig.  1). Moreover, 
using the string plugin, the PPI network determined 
high interrelations among proteins. (Fig. 2).

Expression levels of Dicer, Drosha, Ago2, and DGCR8
Ago2 and Dicer data were normally distributed; there-
fore, analyzed by the unpaired parametric t-test. Con-
versely, Drosha and DGCR8 data were not normally 
distributed, thus, the non-parametric Mann–Whitney 
test was applied. It was determined that expression 
level of Ago2, Dicer,  and Drosha were significantly 
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downregulated (Log FC: − 3.46, − 1.92, − 4.23, respec-
tively) in COVID-19 patients compared with control 
group (Fig.  3 A–C). However, no significant differ-
ence of DGCR8 expression (Log FC: − 0.32) was found 
groups (Fig.  3D). Finally, pearson correlation analysis 
determined significant interrelation between Ago2 and 
Drosha expression with Dicer expression level (Addi-
tional file 1: Figure S1).

Discussion
Since the onset of the Severe Acute Respiratory Syn-
drome (SARS) in 2002–2003 and the Middle East Res-
piratory Syndrome (MERS) in 2012, many research has 
been devoted to providing accurate information on the 
pathogenesis of the disease along with proposing new 
treatment strategies. Despite outstanding progress in 
producing effective vaccines, SARS-CoV-2 remains a 
global health challenge throughout the world. To date, 
several diagnostic strategies and treatment methods 

have been investigated, including recovery plasma and 
serum therapy [21], autophagy and virophagy [22], anti-
viral drugs [23–26], and nanobiotechnology-based 
approaches. Due to the necessity developing effective 
therapeutics based on the virus-pathogenesis mecha-
nism, the RNAi mechanism has the point of intense 
interest. Several proteins such as host receptors as well 
as proteins associated with the virus entrance, repli-
cation, and survival could be the potential targets for 
RNAi mechanism [6]. This study investigated the role of 
the RNAi system as an innate immune response to viral 
infection in COVID-19 patients. Dicer, Drosha, Ago2, 
and DGCR8 (critical components of RNAi) were selected 
for evaluation in COVID-19 patients. Based on the in-
silico analysis, these genes are significantly involved in 
gene silencing processes through miRNA and siRNA 
(Fig.  1). RNAi is defined as an antiviral defense mecha-
nism that suppresses the expression of viral proteins by 
targeting mRNAs [10, 27]. Hasan et.al investigated active 

Fig. 1  Gene ontology enrichment analysis. microRNA biogenesis was enriched as a signaling pathway in which all four genes are involved. dsRNA 
binding and endoribonuclease complex were enriched as molecular function and cellular compartment, respectively (p-value ≤ 0.05)
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RNAi systems against SARS-CoV-2 using computational 
prediction approaches. They reported 24 pre-miRNA 
hairpins, 131 siRNAs, 12 human miRNA, and 10 siRNA 
molecules as active therapeutic agents against SARS-
CoV-2 [28]. Previous studies have examined the antiviral 
defense potential of several miRNAs and siRNAs against 
some viruses including HIV-1 [29], Influenza [30], Zika 
[31] and Hepatitis C (HCV) [32]. These information 
introduced some antiviral RNAi therapeutics that could 
effectively inactivate SARS-CoV-2 [6]. Until a few years 
ago, siRNAs were thought to be exclusively exogenous, 
like viral RNA. However, investigations have provided 
some strong evidence that mammalian cells could pro-
duce siRNAs against viral infection. Significantly, the pro-
duction of endogenous siRNAs in 293 human cells was 
reported during the response to infection with influenza 
A virus (IAV) or human enterovirus 71 (HEV71) [33, 34]. 
Contrary to the antiviral function of RNAi, viruses could 
be released virus-encoded suppressors of RNAi (VSRs) to 
escape from the immunity system Some of these suppres-
sors have been identified in cells infected with influenza 
A virus (non-structural protein 1), human enterovirus 71 
(3A protein), and Nodamura virus (B2 protein) [35]. In 
addition, He et al. found that RNAi (siRNA-RISC) targets 
replicase 1A region of SARS-CoV, thus inhibiting SARS-
CoV infection in-vitro [36]. Given the 80% sequence 
identity between SARS-CoV and SARS-CoV-2 and high 
protein homology [37], investigation of SARS-CoV-2 
could be effective. We found that the expression levels 

of Dicer, Drosha, and Ago2 were significantly reduced 
in patients with COVID-19 compared with healthy indi-
viduals. However, the differentially expressed DGCR8 
between two groups was not statistically significant. Mat-
skevich et al. investigated the role of RNAi in both Vero 
and A549 cell lines lacking interferon (IFN) system that 
were infected with influenza A virus. They concluded 
that the disfunction of Dicer could increase viral replica-
tion and induce apoptosis in infected cells [38]. Moreo-
ver, Modai et al. determined that HIV-1 infection could 
up-regulate the miRNAs and down regulate the level of 
Dicer1, HRB (HIV-1 Rev-binding protein) and HIV-EP2 
(Human Immunodeficiency Virus Type I Enhancer Bind-
ing Protein 2), in human Sup-T1 cells. These miRNAs 
could regulate directly the host genes (Dice1, HRB and 
HIv-EP2) and HIV-1 interferes with the human immune 
response against HIV infection [39]. In another study, the 
significant reduction of Dicer, Drosha, and DGCR8 levels 
were found in human A-549 cells following Dengue virus 
(DENV4) infection [40].

There are no reports of Ago2 expression in human 
cells. However, defective fly Ago-2, in Drosophila mela-
nogaster, is susceptible to infection with Drosophila 
C virus and cricket paralysis virus [41]. Demirci et  al. 
are predicted that about 30 viral mature miRNA-like 
sequences could target 1,367 human genes, affecting 
their functions at different cellular processes. Further-
more, some human miRNAs could target SARS-CoV-2 
genes such as S, M, N, E proteins and open reading 
frames. Ultimately, these valuable insights on miRNAs 
mechanism could promise further advances in develop-
ing novel therapeutic agents for SARS-CoV-2 infections 
[42]. A recent in silico targeted SARS and COVID-19 
genomes using human miRNAs. SARS and COVID-19 
targeting miRNAs, 848 and 873 respectively, were found 
in which 315 and 290 miRNAs are exclusive for COVID-
19 and SARS, respectively. The results also identified 19 
miRNA targeting isolates out of 29 COVID-19 isolates 
[43]. In addition, Arisan et al. suggested seven key miR-
NAs linked with viral pathogenicity and host responses 
that could be used as effective therapeutic approaches 
in the treatment of COVID-19 and its pathological con-
sequences [44]. Overall, dysregulation of Dicer, Drosha, 
Ago2 could play an important role in promoting viral 
infection. An explanation for the reported dysregulation 
in the three mRNAs mentioned is that SARS-COV-2 may 
defeat key components of the RNAi system to escape 
antiviral defense resulting in uncontrolled replication and 
transcription. On the other hand, given the high average 
age of patients admitted to the ICU and the clinical man-
ifestations of the disease, it could be suggested that the 
RNAi mechanism is unable to defend against viral infec-
tion and the virus rapidly disables the system. Finally, 

Fig. 2  Protein–protein interaction (PPI) network analysis of DICER, 
Drosha, Ago2, and DGCR8. The edge’s labels are based on predicted 
PPI score
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correlation analysis demonstrated a significant relation 
between Ago2 expression to Dicer and Drosha to Dicer 
(Additional file  1: Figure S1). These significant interac-
tions may indicate the interrelation of RNAi components, 
in which dysregulation of one factor could exacerbate the 
effects of the virus infection and consequently lead to the 
malfunction of the RNAi mechanism. As predicted in 
Fig. 2, these proteins may be strongly correlated based on 
high scores. However, according to the results of corre-
lation analysis, only two interrelations (Ago2 with Dicer, 
and Drosha with Dicer) were confirmed.

Conclusion
No vaccine or drug has been developed against COVID-
19 with 100 efficiencies. In this regard, development of 
novel therapeutic agents considering the role of RNAi 
mechanism is of great importance. In conclusion, we 
observed the dysregulation of key RNAi components, 
Dicer, Ago2, and Drosha, as crucial antiviral defense fac-
tors in RNAi system in COVID-19 patients. This finding 

could provide insights to further identification of SARS-
CoV-2 pathogenesis for COVID-19 treatment based on 
the RNAi system.

Limitations
Difficulty of sampling and small size of population.
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Fig. 3  Quantitative real-time PCR analysis of Ago2 (A), Dicer (B), Drosha (C), and DGCR8 (D) in COVID-19 patients and healthy controls. The mRNA 
expression level of genes was evaluated in the whole blood samples of 20 COVID-19 patients and 20 controls. P values are calculated by parametric 
t-test for Ago2 and Dicer (p-value < 0.0001) and non-parametric Mann Whitney test for Drosha p-value < 0.0001 andDGCR8 non-significant (ns: 
p-value 0.213). GAPDH was utilized for an endogenous reference to normalize mRNA expression levels
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analysis graphs. The interrelation of (A) Ago2 with Dicer (p-value ≤0.002; 
r: 0.7430; 95% confidence interval; 0.4477 to 0.8922; R squared: 0.5521) 
and (B) Drosha with Dicer (p-value ≤ 0.0034; r: 0.6223; 95% confidence 
interval: 0.2481 to 0.8349; R squared: 0.3872) was determined with the 
regression line. The expression values were calculated as -log relative 
expression.
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