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Abstract 

Objective:  Transcriptional profiling of immune cells is an indispensable tool in biomedical research; however, heter-
ogenous sample types routinely used in transcriptomic studies may mask important cell type-specific transcriptional 
differences. Techniques to isolate desired cell types are used to overcome this limitation. We sought to evaluate the 
use of immunomagnetic B cell isolation on RNA quality and transcriptional output. Additionally, we aimed to develop 
a B cell gene signature representative of a freshly isolated B cell population to be used as a tool to verify isolation effi-
cacy and to provide a transcriptional standard for evaluating maintenance or deviation from traditional B cell identity.

Results:  We found RNA quality and RNA-sequencing output to be comparable between donor-matched PBMC, 
whole blood, and B cells following negative selection by immunomagnetic B cell isolation. Transcriptional analysis 
enabled the development of an 85 gene B cell signature. This signature effectively clustered isolated B cells from 
heterogeneous sample types in our study and naïve and memory B cells when applied to transcriptional data from 
a published source. Additionally, by identifying B cell signature genes whose functional role in B cells is currently 
unknown, our gene signature has uncovered areas for future investigation.
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Introduction
The rise of increasingly affordable and accessible next-
generation sequencing (NGS) technologies has made 
transcriptional profiling via RNA-sequencing (RNA-
seq) an achievable and essential research tool [1]. Whole 
blood (WB) and peripheral blood mononuclear cells 
(PBMC) are routinely used sample types in RNA-seq 
studies due to their ease of collection and capacity for 
long-term storage. However, while they provide a wealth 
of biological information, the heterogeneity of these 
sample types can be a drawback, as cell type-specific 

transcriptional differences can be masked in bulk RNA-
seq approaches [2].

When transcriptional information on a discrete cell 
type is required, multiple experimental techniques are 
available to overcome sample heterogeneity, including 
single cell sequencing and fluorescence-activated cell 
sorting (FACS). While these techniques are highly effec-
tive, they require specialized equipment and can be costly 
[3]. The most feasible approach for many labs is the use of 
immunomagnetic separation methods, as it is cost-effec-
tive, requires minimal specialized training or equipment, 
and many commercially available kits exist for isolating 
standard immune cell components [4].

B cells are an immune cell type of particular interest 
in biomedical research, representing a cornerstone of 
adaptive immunity, with direct involvement in certain 
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cancers and autoimmune disorders [5, 6]. There have 
been a number of studies identifying B cell gene expres-
sion patterns associated with various disease states, 
including non-Hodgkin’s lymphoma [7] and autoimmune 
diseases [8]. Fewer studies have attempted to identify a 
B cell gene signature from healthy donors relative to a 
heterogenous population [9, 10], and most of these stud-
ies were performed using microarrays, which can be lim-
ited in their sensitivity and reproducibility [11]. With the 
increasing importance of subset-specific transcriptional 
analysis in disease research, having a high-quality B cell 
gene signature obtained via modern NGS technologies is 
critical. In this study, we have evaluated the RNA qual-
ity and sequencing output of B cells isolated using nega-
tive selection immunomagnetic cell separation and have 
established a baseline B cell gene signature from healthy 
donors. Our B cell signature provides a useful tool for 
verifying B cell purity at the transcriptional level and 
establishes a transcriptional baseline for assessing devia-
tions incurred by environmental or experimental pertur-
bations. Furthermore, our signature has identified genes 
that play an unknown role in B cell function that are of 
interest for future investigations.

Main text
Methods
Sample collection, processing, and NGS
Human whole blood samples were obtained from healthy 
donors on an IRB-approved NIH protocol (99-CC-0168). 
PBMC were isolated from whole blood using Ficoll-
Paque Plus solution (GE Healthcare), and B cells were 
subsequently isolated using the EasySep™ Human B cell 
Isolation kit (StemCell Technologies). RNA was isolated 
from 200  µL whole blood using the Quick-RNA Whole 
Blood kit (Zymo Research), and RNA was isolated from 
PBMC and B cells using the RNeasy Plus Mini kit (Qia-
gen). RNA was assessed for quality on an Agilent 2100 
Bioanalyzer (Agilent Technologies). Library preparations 
were done using TruSeq Stranded mRNA Library Prep 
(Illumina). RNA input was 300  ng for WB and PBMC 
samples and 100  ng for isolated B cells. Libraries were 
normalized to 10 nM, and equal volumes of all 12 librar-
ies were pooled together for sequencing on a NextSeq 
550 instrument (Illumina).

Bioinformatic and statistical analysis
Sequenced reads were aligned to the human reference 
genome (UCSC hg19) using the RNA-Seq Alignment 
application (v2.0.1) on the BaseSpace Sequencing Hub 
(Illumina). Sequencing files are available on the GEO 
repository: GSE186768. Differential expression analysis 
was performed in R (v4.0.2) [12] using the DESeq2 pack-
age (v1.28.1). Genes were considered to be differentially 

expressed if they had a log2 fold change of < − 1 or > 1 and 
an adjusted p-value (padj) of < 0.05. Bioinformatic analy-
ses were performed using the topGO R package (v2.40.0), 
the web-based WebGestalt analysis tool (www.​webge​
stalt.​org) [13], and the GSEA (v4.0.3) desktop applica-
tion [14, 15]. For validation of our B cell gene signature, 
the RNA-seq dataset from Monaco et al. [16] was down-
loaded from GEO: GSE107011. The ImmGen database 
(https://​www.​immgen.​org/) was used to investigate sig-
nature gene expression levels. Additional statistics and 
figure creation were done using GraphPad Prism (v8.4.3; 
GraphPad Software). For a more detailed methodological 
description, see Additional file 1.

Results and discussion
RNA quality and NGS output is consistent among WB, PBMC 
and isolated B cells
To compare the quality of RNA and sequencing data gen-
erated from related sample types, we collected donor-
matched WB and PBMC from four healthy donors 
(HD). Immunophenotyping of PBMC revealed some 
inter-donor variability (Fig.  1a, b; Additional file  2: Fig. 
S1a); however, the CD19+ B cell population was consist-
ent at 7%. B cells were then isolated from fresh PBMC 
using the StemCell™ EasySep™ Human B cell isolation 
kit. This kit utilizes negative selection to isolate B cells. 
In this way, non-B cells are labeled with antibodies con-
jugated to magnetic particles, and the cells remaining 
after magnetic separation constitute an enriched B cell 
population. B cell purity was assessed via flow cytome-
try in all samples, and we observed a robust enrichment 
of B cells, with > 98% of CD45+ lymphocytes expressing 
CD19 (Fig. 1a; Additional file 2: Fig. S1b). RNA was iso-
lated from WB, PBMC and B cells, and RNA quality was 
assessed based on RNA integrity number (RIN). All sam-
ples demonstrated high RIN scores (RIN > 8) suitable for 
NGS studies, and yielded sufficient RNA for NGS library 
preparation (Table 1).

Samples were sequenced on the Illumina NextSeq550 
platform. The total number of reads/samples, percent 
of reads mapping to abundant regions of the genome, 
percent aligned reads, and fold coverage across coding 
regions were relatively consistent across different sample 
types (Table 1). Overall, negative selection B cell isolation 
was highly efficient and resulted in RNA and sequencing 
output that was of similar quality among sample types. 
In this way, the additional processing steps required for 
B cell isolation did not adversely affect experimental 
results.

Identification of a B cell gene signature
RNA-sequencing was performed on freshly isolated, 
donor-matched WB, PBMC, and B cells (Additional 
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file  3: Table  S1). Principle component analysis (PCA) 
demonstrated tight and distinct clustering of sam-
ple types, irrespective of donor (Fig.  1c), and differen-
tial expression analysis identified 7027 differentially 

expressed genes (DEGs) between B cells and WB and 
5,537 DEGs between B cells and PBMC (Additional file 3: 
Table  S2). Significant gene ontology (GO) terms related 
to B cell-specific functions were identified, and gene set 
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Fig. 1  Identification of a B cell gene signature. a Representative flow plots of PBMC immunophenotyping (top) and B cell purity check (bottom). 
Cells were previously gated on Lymphocytes/Single cells/Live/CD45+. b Summary of immunophenotyping results for PBMC samples. Individual 
values are displayed along with the average ± SD. c PCA plot from transcriptional analysis of whole blood (WB), PBMC and isolated B cells (BC). d List 
of 85 genes that make up the B cell gene signature. e Relative gene expression of select B cell signature genes. Statistics computed using unpaired 
T tests with correction for multiple comparisons. Graph displays average ± SD. p-value applies to comparisons of B cells versus both PBMC and WB. 
f. Heatmap with hierarchical clustering using the B cell gene signature. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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enrichment analysis (GSEA) showed positive enrichment 
of B cell-specific gene sets (Additional file 2: Fig. S2a, b; 
Additional file 3: Table S3). Bioinformatic analyses, there-
fore, supported efficient B cell isolation and transcrip-
tional capture.

Differential gene expression analysis in PBMC and B 
cell samples was used to identify a robust B cell gene sig-
nature indicative of a homogenous population derived 
from healthy individuals. The top 200 most significant 
DEGs between B cells and PBMC effectively clustered 
all samples and included 51 upregulated genes and 149 
downregulated genes (Additional file  2: Fig. S2c). To 
expand our signature gene set, these 51 upregulated 
genes were combined with a B cell transcriptional mod-
ule [17] to create a B cell gene signature consisting of 
85 genes upregulated in B cells relative to heterogenous 
PBMC samples (Fig.  1d). The module from Chaussabel 
et  al. [17] was derived using computationally identified 
patterns of coordinately expressed genes in PBMC micro-
arrays sourced from multiple disease states. We felt that 
combining gene sets identified using these two divergent 
methodological approaches would create a robust B cell 
gene signature. Indeed, this gene set was highly enriched 
for B cell-specific GO terms (Additional file 2: Fig. S3a), 
included a number of highly expressed genes with critical 
B cell functions (Fig.  1e; Additional file  2: Fig S3b), and 
resulted in distinct clustering of B cell samples relative to 
heterogenous sample types (Fig. 1f ).

Validation of B cell gene signature in external dataset
To validate our B cell gene signature, we used tran-
scriptional data published by Monaco and colleagues 
[16] consisting of RNA-seq data from sorted immune 
cell types, including multiple B cell subsets. B cell sub-
sets were isolated via FACS and were classified as: naïve 
(CD27−IgD+), non-switched memory (CD27+IgD+), 

switched memory (CD27+IgD−), exhausted memory or 
double negative (DN) (CD27−IgD−), and plasmablasts 
(CD27+IgD−CD38hi). As the immunomagnetic separa-
tion method we used did not discriminate between spe-
cific B cell subsets, we wanted to ensure that our B cell 
signature was indicative of these multiple B cell devel-
opmental states. Hierarchical clustering using our B 
cell gene signature was performed on log2-transformed 
Transcripts Per Million (TMP) data. Our B cell signature 
effectively clustered naïve and memory B cell populations 
from heterogenous PBMC samples (Fig.  2); however, 
plasmablasts demonstrated a divergent gene expression 
profile. This is to be expected since, compared to naïve 
and memory B cell, plasmablasts are a small component 
of the circulating B cell population (96% vs ~ 1%) [18], 
and thus contributed little to our B cell signature. Fur-
thermore, plasmablasts, along with plasma cells, rep-
resent a highly specialized B cell subset with a unique 
transcriptional profile. They have been shown to down-
regulate a number of traditional B cell genes, including 
CD24, CXCR5, PAX5, EBF1, and SPIB [19], all of which 
were part of a downregulated cluster (Fig. 2) in our analy-
sis. Since some genes crucial for B cell function can also 
be expressed in other immune cell types, we wanted to 
verify that our B cell gene signature would robustly iden-
tify B cells when challenged with other homogenous 
non-B cell populations. Hierarchical clustering was per-
formed on the same external dataset [16], this time using 
sorted B cell subsets, heterogenous PBMC samples, and 
24 additional sorted leukocyte subsets. Once again, our 
B cell signature effectively clustered naïve and memory 
B cell populations separate from all other leukocyte cell 
types (Additional file 2: Fig. S4). Overall, a validation of 
our B cell gene signature using an external dataset found 
it to be indicative of naïve and memory B cell subsets rel-
ative to both a heterogenous PBMC population as well as 
homogenous non-B cell leukocyte populations.

Manual characterization of B cell signature genes
An in-depth exploration of B cell signature genes 
revealed that over half have known functional roles in 
B cells (Additional file 2: Fig. S5). The remaining genes 
had no reported function in B cells; however, they 
represent promising areas of further investigation, as 
their significant expression in B cells suggests involve-
ment in functional pathways. Indeed, CCDC50, KMO, 
PAWR​, PEG10, and PLPP5 may play a role in multiple 
B cell-associated cancers [20–24], and CDCA7L and 
OSBPL10 may be risk markers in multiple myeloma 
and diffuse large B cell lymphoma, respectively [25, 
26]. Additionally, investigation of B cell signature gene 
expression levels via the Immunological Genome Pro-
ject (https://​www.​immgen.​org/) Human Expression 

Table 1  RNA quality and NGS output among sample types

Values represent mean (SD), n = 4/group. RNA yield for whole blood corresponds 
to ng/200 µl, and for PBMC and B cells yield represents ng/1e6 cells. RIN, RNA 
integrity number

RNA quality and yield Whole blood PBMC Isolated B cells

RIN 9.28 (0.3) 9.75 (0.3) 9.78 (0.2)

RNA yield (ng) 301 (30.9) 559 (364.2) 186 (137.4)

Sequencing output

 Total reads (× 106) 53.97 (7.9) 47.21 (2.45) 57.31 (4.86)

 Abundant reads (% 
of total)

7.60 (1.33) 7.46 (1.70) 9.87 (1.19)

 Aligned reads (% 
filtered)

97.60 (0.33) 97.88 (0.28) 94.93 (1.74)

 Fold coverage (cod-
ing)

113.32 (20.53) 103.92 (6.54) 100.69 (11.92)

https://www.immgen.org/


Page 5 of 7Henning et al. BMC Research Notes          (2021) 14:418 	

Data identified 39 genes as having B cell-specific gene 
expression (Additional file 2: Fig. S5, Additional file 3: 
Table S4). This included expected genes, such as many 
involved in the BCR signaling pathway, but also genes 
of unknown function in B cells, including PLEKHG1, 
RALGPS2, and SYNPO, among others. We have thus 
identified a B cell gene signature representative of a 
freshly isolated, homogenous B cell population consist-
ing of both well-characterized B cell genes and novel 
genes whose functional characterization may provide 
insight in the understanding of B cell malignancies.

Conclusions
RNA-sequencing performed in donor matched WB, 
PBMC, and isolated B cells has verified the use of nega-
tive selection immunomagnetic cell separation as a viable 
way to isolate B cells for NGS studies. We have identified 
a B cell gene signature representative of a freshly isolated, 
homogenous B cell population. In particular, our signa-
ture may be used for transcriptional verification of naïve 
or memory B cell identity, especially in instances where 
immunophenotyping is not possible, or to assess devia-
tion from the traditional B cell transcriptome following 
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chemical or genetic perturbation. Our B cell gene sig-
nature consists of many genes with well-characterized 
roles in B cell development and function; however, the 
identification of many genes with unknown B cell func-
tions represents an important area for future investiga-
tions to enhance our understanding of B cell-related 
malignancies.

Limitations
The limitations of this study include the relatively small 
sample size and our lack of B cell subset composition 
information for isolated samples. Additionally, we uti-
lized a negative selection kit so as to avoid inadvertent B 
cell activation; however, it would be beneficial to experi-
mentally verify the transcriptional effect of negative 
enrichment kits relative to positive enrichment kits or 
other forms of B cell isolation.
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