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Npr2 mutant mice show vasodilation 
and undeveloped adipocytes in mesentery
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Abstract 

Objective:  The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide 
receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene 
of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), 
such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric 
vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency.

Results:  Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the 
Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesen‑
teric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/
NPR-B signals on intestine with mesentery.
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Introduction
Natriuretic peptide receptor B (NPR-B) is known as a 
receptor for C-type natriuretic peptide (CNP), which 
contributes to the generation of intracellular second mes-
senger cyclic guanosine-3ʹ,5ʹ-monophosphate (cGMP) by 
binding to CNP. The signal is involved in smooth muscle 
relaxation and blood pressure control and is recognized 
for its biological importance. Further, it has been pre-
dicted that CNP/NPR-B signaling has a different regu-
latory mechanism depending on the organ and size of a 
blood vessel [1, 2]. Recently, a human epidemiological 
study reported that CNP levels in the blood were high in 
hypertensive patients [3]. Whether this is due to a bio-
logical mechanism to high blood pressure or a result 
of a CNP-induced increase in blood pressure remains 

elusive. In addition, in the context of human obesity, it 
was reported that CNP is a suppressor of obesity as its 
level was decreased in the obese group [4–6]; however, 
another study showed no significant difference in blood 
CNP levels between the normal and obese groups [7]. 
Furthermore, CNP suppressed obesity in mice [8, 9] 
while CNP/NPR-B/cGMP promoted adipogenesis in an 
in vitro experimental system [10].

We have previously established a spontaneous mutant 
mouse strain as a short-limbed dwarfism (SLW) mouse. 
Mice homozygous for SLW (Npr2slw/slw) are defective in 
NPR-B function due to a frameshift mutation in Npr2, 
particularly in the exon-8 encoding the region present 
just under the transmembrane domain [11]. The pheno-
types of Npr2slw/slw include dwarfism [12], gastrointes-
tinal (GI) disorders such as severe ileus-like condition 
with gas [11, 13, 14], erectile dysfunction in male repro-
ductive organs [15] and significant reduction of white 
adipose tissue and triglyceride in the blood in adults 
[14]. We revealed that CNP relaxes the pyloric antrum 
and large intestine of normal mice but not Npr2slw/slw, 
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demonstrating a site-specific direct effect of CNP on the 
GI tract [11]. Therefore, we previously believed that the 
GI disorder in Npr2slw/slw arose from the direct effects of 
CNP/NPR-B signal deficiency on the GI tract. However, 
although the loss of NPR-B did not affect the levels of the 
ligand CNP, an electrolyte, and triglyceride in the blood 
in preweaning Npr2slw/slw, significant bloodless blood ves-
sels and few adipocytes in the mesentery and abnormal 
intestinal development could also be factors for GI disor-
ders [14]. These findings indicate that CNP/NPR-B sign-
aling plays an essential role in regulating mesentery and/
or intestinal blood flow.

However, it is unclear how CNP/NPR-B signal defi-
ciency affects mesenteric vascular morphology. Many of 
the Npr2slw/slw mice exhibited gastrointestinal disorders 
at 10 to 15  days of age. Therefore, in the present study, 
we analyzed the morphology of mesenteric vessels in 
Npr2slw/slw mice, focusing on when they started to show 
their most distinctive phenotype with severe GI disorders 
in addition to survived adult Npr2slw/slw mice.

Main text
Materials and methods
Mice
An Npr2slw/slw strain was established from a mating 
between a founder male spontaneously mutant mouse 
in the ddY mouse colony at Okayama University and 
a C57BL/6J female [11, 12]. The mice in the mix back-
ground of ddY and C57BL/6J used in this study was 
described in the previous report [14]. The mice were 
maintained under standard 12  h light/dark conditions. 
Either heterozygotes or wild-type mice were used for 
comparison (referred to as controls); homozygotes from 
the same litter for controls were used and referred to as 
Npr2slw/slw. Mice were anesthetized by injecting a com-
bined anesthetic containing 7.5% medetomidine hydro-
chloride, 8% midazolam, and 10% butorphanol tartrate 
in saline (10  µl/g) into the subcutaneous of the neck or 
intraperitoneal using a 29G syringe. Mice were eutha-
nized by cut the diaphragm under anesthesia and imme-
diately removed their whole gut.

All animal experiments were carried out in accord-
ance with the institutional guidelines regarding animal 
care and handling, and the experimental protocol was 
approved by the Institutional Animal Care and Use Com-
mittee of the University of Tokyo.

Elastica van Gieson (EVG) staining
Whole GI tissue with mesentery was fixed in 10% buff-
ered formalin at 4 °C overnight, dehydrated, and embed-
ded in paraffin. Six-µm-thick sections were cut, placed 
on glass slides, and subjected to EVG and immunofluo-
rescence staining.

For EVG staining, tissues were deparaffinized, hydro-
philized, and immersed in 1% HCl in 70% ethanol for 
3 min. The tissues were then immersed in resorcin-fuch-
sin solution (40321, Muto Pure Chemicals, Tokyo, Japan) 
for 2  h. Washing was performed with 100% ethanol for 
3 min three times, followed by immersion in water, and 
treatment with iron-hematoxylin (40341 and 40351 Muto 
Pure Chemicals) for 15  min. After 30  min of rinsing 
under running water, the tissue was immersed in 5% Sir-
ius Red (33061, Muto Pure Chemicals) in saturated picric 
acid for 15 min, quickly dehydrated, permeabilized, and 
embedded.

Immunofluorescence staining
Immunostaining was performed as previously described 
[14], and the primary antibodies used were rabbit poly-
clonal anti-alpha-smooth muscle actin (aSMA) antibody 
(ab5694, Abcam, Cambridge, UK, 1:100 dilution) and 
goat polyclonal lymphatic vessel endothelial receptor 1 
(LYVE-1) antibody (AF2125, R&D systems, Minneapo-
lis, MN, USA, 1:100 dilution). The secondary antibodies 
used were donkey anti-rabbit IgG H&L Alexa Fluor 488 
(A21206, Thermo Fisher, Waltham, MA, USA, 1:1,000 
dilution) and donkey anti-goat IgG H&L 594 (A11058, 
Thermo Fisher, 1:1,000 dilution).

Microscopy and acquisition
Stained images were acquired using a BZ-X710 all in one 
microscope (Keyence, Osaka, Japan) or an Olympus fluo-
rescent microscope IX73 equipped with a color camera 
DP73 (Olympus, Tokyo, Japan) for P8 and P15 samples 
or adult samples, respectively. For the observation of 
P8 and P15 samples, autofocus imaging was done using 
a ×4 lens, and z-stacked images were generated with 10 
section pictures with 0.5 µm intervals when using a ×40 
lens. For the observation of adult samples, single focal 
images were observed using ×4, ×20, and ×40 lenses. 
Images were edited using Fiji software [16] and Photo-
shop (Adobe, San Jose, CA, USA). Mesenteric artery con-
taining two layers of lamina elastica (LE) and parallelly 
running veins were selected for imaging.

Blood pressure measurement for adult mice
The blood pressure of mice was measured using a BP-
98A blood pressure system (Softron, Tokyo, Japan) by the 
tail-cuff method. Systolic, diastolic, and heart rates were 
measured under a condition of non-anesthesia and reten-
tion using a mouse retention device. Measurements were 
obtained five times for each mouse, and their average val-
ues were shown in graphs.
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Statistical analysis
Data are expressed as the mean ± standard deviation (SD). 
Dot plots were generated using GraphPad Prism7 soft-
ware (GraphPad Software, San Diego, CA, USA). The area 
of the lumen of the blood vessel field was calculated using 
the Fiji software. The statistical significance of differences 
in mean values was assessed using the Mann–Whitney U 
test. There were no criteria used for including and exclud-
ing experimental units. Randomization was not used to 
allocate experimental units.

Results
Vasodilation and undeveloped adipose cell in Npr2slw/slw

In both control and Npr2slw/slw mice, a bundle of mesenteric 
arteries, veins, lymph vessels, and nerves were arranged 
and surrounded by serosa. At 1 week of age (P8), a small 
adipose mass covered with a capsule was found in this 
bundle (Fig. 1A). At 2 weeks of age (P15), the inside of the 
mesentery was filled with further developed adipocytes in 
control, whereas no developed adipocytes were found in 
the Npr2slw/slw mice (Fig. 1C).

The arteries in control at both P8 and P15 were covered 
with a developed adventitia, the inner and outer LE were 
contracted, and the blood vessels were thickened (Fig. 1A 
and C). In contrast, in Npr2slw/slw mice at both ages, the LE 
was relaxed, and the blood vessels were dilated (Fig.  1A 
and C). The LE of veins was also contracted in control but 
was dilated in Npr2slw/slw (Fig. 1A and C). At 1 year of age 
(adult), the LE of artery and vein was contracted in both 
control and Npr2slw/slw (Fig. 1E). The inside of the mesen-
tery was filled with large adipocytes in control, whereas 
small adipocytes were filled in the Npr2slw/slw mice (Fig. 1E).

The lumen areas of arteries and veins were measured and 
compared between the control and Npr2slw/slw mice, and 
the results showed that the areas were significantly larger 
for Npr2slw/slw than for the control in P8 and P15 (Fig. 1B 
and D). In adult mice, the lumen area of arteries was larger 
than that of control mice, and there was no difference in 
the veins (Fig. 1F).

In the arteries and veins of the smooth muscle, the 
smooth muscle in the control mice contracted in accord-
ance with the LE, whereas that in Npr2slw/slw was clearly 
elongated at P15 (Fig.  2A). However, smooth muscle in 
both control and Npr2slw/slw adult mice contracted in 
accordance with the LE (Fig.  2B). Systolic, diastolic, and 
heart rates were similar between control and Npr2slw/slw in 
adult male mice (Fig. 2C).

The villi of the entire intestine in control were developed 
uniformly, while Npr2slw/slw exhibited uneven develop-
ment at preweaning ages but normally developed at adult 
age [14]. The lacteals in the partially developed villi were 
dilated, and the smooth muscle in the villi was undevel-
oped in Npr2slw/slw compared to that of the control in P15. 
At adult age, the lacteal and smooth muscle were recog-
nized in villi of both control and Npr2slw/slw mice, whereas 
the arrangement of nuclei of mucosal epithelial cell and 
lamina propria mucosae was disorganized in Npr2slw/slw 
mice (Fig. 2D).

Discussion
The CNP/NPR-B signal is known as an endothelium-
derived vasorelaxant factor and has recently been recog-
nized as an inhibitor of adipose hypertrophy. However, 
despite the lack of the CNP/NPR-B signal, Npr2slw/slw unex-
pectedly displayed dilated blood vessels and undeveloped 
white adipose tissue in the mesentery. Several reasons may 
explain this. First, more CNP was available for binding to 
NPR-C, resulting in enhanced NPR-C function. NPR-C has 
a clearance of natriuretic peptides [17] while it also inhib-
its adenylyl cyclase via activation of phospholipase C by 
coupling with the Gi protein [18]. Indeed, NPR-C has been 
shown to have multiple functions: CNP/NPR-C is essential 
for vascular homeostasis and has a vasorelaxant effect [19, 
20]. The lack of NPR-B may result in increased free CNP, 
which binds and activates NPR-C, leading to the dilation of 
mesenteric vessels and lacteals. Second, NPR-C has a bind-
ing affinity not only for CNP but also for other natriuretic 
peptides, such as atrial (ANP) and brain natriuretic peptide 
(BNP) [21]. As mentioned above, increased CNP bind-
ing to NPR-C may limit ANP and BNP binding to NPR-C, 
thus, enhancing the function of NPR-A, which is a recep-
tor for ANP and BNP. In particular, ANP/NPR-A regulates 
blood pressure and fluid balance by relaxing major blood 
vessels [22–25]. This may have caused vasodilation in the 
Npr2slw/slw mice. Given that relaxation of blood vessels by 
NPR-A or NPR-C is separable action from dilation, these 
are speculative but maybe probable. In addition, it was 
recently reported that NPR-A contributes to the reduction 
of white adipose tissue in humans and mice [26, 27]. There-
fore, the suppression of adipogenesis in Npr2slw/slw may also 
be due to the increased activity of NPR-A. Lastly, loss of 
CNP/NPR-B signal may cause the loss of its relaxing effect 
on the mesenteric vessels and become congested, giving 
the appearance of dilated vessels. Because experiments 

(See figure on next page.)
Figure. 1  EVG staining and lumen area of the blood vessel. A, C, and E, EVG staining of the mesentery. Npr2slw/slw (right) and litter control (left) at 
1 week of age (P8) (A), 2 weeks of age (P15) (C), and 1 year of age (adult) (E). The bottom row shows a magnified image of the enclosure in the top 
row. A: artery, V: vein, Ad: adipocyte, Ly: lymph vessel. B, D, and F, Comparison of vascular lumen area in P8 (B), P15 (D), and adult (F). N = 3 mice for 
each genotype in P8 and P15. For adult samples, n = 4 and 6 for control and Npr2slw/slw mice, respectively. The inner lines represent mean and SD, 
respectively. Dots represent the lumen size of each sample



Page 4 of 7Sogawa‑Fujiwara et al. BMC Research Notes          (2021) 14:438 

Control Npr2slw/slw

1mm

50µm

1mm

50µm

V

A
Ad

N

N
N

Ly

A

V

N

Ly

Ad

1mm 1mm

50µm 50µm

V

V

A

A

Ly

Ly

Ad

Ad

Ad

AdN
N

Ad

Ad

P8

P15

Adult

100µm 100µm

1mm1mm

V

A

Ad
V

A

Ad

LyN

Ly

N

N
Ad

Ad

Ad Ad

0

10000

20000

30000

40000

50000

60000

A
re
a
(µ
m

2
)

Artery Vein
p < 0.035 p < 0.364

Adult

C
o
n
tr
o
l

N
p
r2

sl
w
/s
lw

C
o
n
tr
o
l

N
p
r2

sl
w
/s
lw

Control Npr2slw/slw

Control Npr2slw/slw

C

A

0

5000

10000

15000

20000

25000

A
re

a
(µ

m
2
)

Artery Vein
p < 0.006 p < 0.007

P15

C
o

n
tr

o
l

N
p
r2

sl
w
/s
lw

C
o

n
tr

o
l

N
p
r2

sl
w
/s
lw

0

5000

10000

15000

20000
Artery Vein

p < 0.001 p < 0.009

P8

A
re

a 
(µ

m
2
)

C
o

n
tr

o
l

N
p
r2

sl
w
/s
lw

C
o

n
tr

o
l

N
p
r2

sl
w
/s
lw

E

D

B

F

Figure. 1  (See legend on previous page.)
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Figure. 2.  Cross-section and blood pressure. A, Artery of Npr2slw/slw (right) and litter control (left) at P15 and adult. Cyan: smooth muscle, gray: 
nuclei. B, Veins of Npr2slw/slw (right) and control (left) at P15 and adult. Cyan: smooth muscle, gray: nuclei. C, Blood pressure of adult male mice 
(8–9 months of age), n = 2 control and 8 Npr2slw/slw mice, respectively. D, Cross-section of the villi. Npr2slw/slw (right) and control (left) at P15 and 
adult. The bottom row shows magnified images of the enclosure in the top row. Cyan: smooth muscle, magenta: lacteal, and white: nucleus
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using mice have shown that CNP/NPR-B signals relax the 
mesenteric artery [28], it may be simply that the loss of 
NPR-B affected the mesenteric vessels. However, in adult 
Npr2slw/slw mice, vasodilation was not evidently seen, and 
there appeared to be no abnormalities on blood pressure. 
Thus, it was suggested that CNP/NPR-B signal plays an 
essential role in the normal functions of blood vessels dur-
ing pre-weaning ages and maintenance of peripheral tis-
sues during adult age. Small adipocytes of adult Npr2slwslw 
mice may have resulted from affected nutrient absorption 
owing to disorganized mucosal epithelial cells and lamina 
propria mucosae.

It remains to be answered whether the NPR-B of 
Npr2slw/slw, in which a premature stop codon eliminates 
the whole NPR-B structure under the transmembrane 
domain [11], contains only the extracellular ligand-bind-
ing domain that can bind to CNP but is nonfunctional 
or incapable of binding to CNP. That is, it remains to 
be determined whether the majority of CNP is cleared 
by clearance or CNP binds to NPR-C and enhances the 
NPR-C and/or NPR-A function. Further study would 
contribute to understanding the unique GI phenotype 
of Npr2slw/slw mice. Model mice, such as Npr2slw/slw mice, 
can be an essential source of information for understand-
ing the function of genes and the effect of mutations. 
Therefore, the phenotype of the GI and vessel of Npr2slw/
slw mice would provide insight for the treatment of rare 
GI diseases, including the GI tract itself and secondary 
causes, and contribute to the elucidation of the CNP/
NPR-B signaling mechanism in vivo.

Limitation
Blood vessel samples from control and Npr2slw/slw mice 
were observed and prepared in the same criteria, and 
the location in the mesentery was carefully determined 
according to the number of the LE and its morphology 
of the section. However, their location and distance may 
not be thoroughly the same. The number of control mice 
used for blood pressure was small (n = 2), limiting statis-
tical significance. Therefore, no definite conclusion was 
not made regarding blood pressure of Npr2slw/slw (n = 8).
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