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Accelerated nonstandard finite difference 
method for singularly perturbed Burger‑Huxley 
equations
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Abstract 

Objective:  The main purpose of this paper is to present an accelerated nonstandard finite difference method for 
solving the singularly perturbed Burger-Huxley equation in order to produce more accurate solutions.

Results:  The quasilinearization technique is used to linearize the nonlinear term. A nonstandard methodology of 
Mickens procedure is used in the spatial direction and also within the first order temporal direction that construct the 
first-order finite difference approximation to solve the considered problem numerically. To accelerate the rate of con-
vergence from first to second-order, the Richardson extrapolation technique is applied. Numerical experiments were 
conducted to support the theoretical results.
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Introduction
Singularly perturbed differential equations are typically 
characterized by a small perturbation parameter multi-
plied with the highest order derivative term. These types 
of equations appear in computational fluid dynamics, 
hydrodynamics, chemical reactor theory, financial mode-
ling, mathematical biology [1–3]. The solutions of singu-
larly perturbed problems exhibit layer. The conventional 

numerical methods on uniform meshes do not produce 
satisfactory numerical approximations for small values 
of the perturbation parameter. A uniformly convergent 
numerical method, which is a numerical method suitable 
for these problems and in which the error bound is inde-
pendent of the size of the perturbation parameter (see [4, 
5] and the references therein for more details).

In this work the singularly perturbed Burger-Huxley 
equations of the form:

(1)







Lx,εu(x, t) ∼= −ε
∂2u

∂x2
+ αu

∂u

∂x
+

∂u

∂t
− β(1− u)(u− γ )u = 0, ∀(x, t) ∈ D,

u(x, 0) = u0(x), x ∈ [0, 1], u(0, t) = s0(t), u(1, t) = s1(t), t ∈ (0,T ],
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where 0 < ε << 1 is a perturbation parameter. The 
solution domain D = (0, 1)× (0,T ] , and α ≥ 1 , β ≥ 0 , 
γ ∈ (0, 1) are given constants.

Burger-Huxley equation describes the interaction 
between convection, diffusion, and reaction processes 
that have numerous fascinating phenomena such as 
busting oscillation, population genetics, bifurcation, 
and so on [6–11]. A numerical method for Eq.  (1) has 
been developed only in [6] using a robust adaptive grid 
method, a uniformly convergent method, and a singu-
lar perturbation approach respectively. However, all 
these methods considered the standard backward Euler 
scheme. To solve Eq. (1) the idea of using classical numer-
ical methods is not an efficient approach to produce an 
accurate solution. This should be develop an accelerated 
nonstandard finite difference method. As a general rule, 
higher-order convergent methods are preferred as they 
provide well numerical approximations with low compu-
tational cost. So, in this paper, our objective is to propose 
the accelerated nonstandard finite difference method for 
solving Eq. (1) by applying the nonstandard procedures of 
Mickens [12] in the space direction. We provide an error 
analysis for the method and prove that it is uniformly 
convergent with second-order accuracy after applying 
the Richardson extrapolation technique. It is also shown 
that the method is computationally more efficient com-
pared to some existing methods in the literature.

Main text
Numerical method
Consider equation under consideration in Eq.  (1), re-
written as:

where F
(

x, t,u, ∂u
∂x

)

= β(1− u)(u− γ )u− αu ∂u
∂x.

Let us consider the homogenous part of Eq. (2):

We look for a solution to the dimensionless heat equa-
tion of the form of Eq. (3), when ε = 1 , using separation 
of variables, we get the solution to Eq. (3) as:

that satisfies both the initial and boundary conditions 
given in Eq.  (2). The formula in Eq.  (4) will be used to 

(2)











∂u

∂t
− ε

∂2u

∂x2
= F

�

x, t,u,
∂u

∂x

�

, ∀(x, t) ∈ D,

u(x, 0) = u0(x), x ∈ [0, 1], u(0, t) = s0(t), u(1, t) = s1(t), t ∈ (0,T ],

(3)







∂u

∂t
− ε

∂2u

∂x2
= 0 ∀(x, t) ∈ D,

u(x, 0) = u0(x), x ∈ [0, 1], u(0, t) = s0(t), u(1, t) = s1(t), t ∈ (0,T ].

(4)u(x, t) = u0(x) exp(−π2t),

guess intial approximation in the linearization process. 
Thus, to linearize Eq. (2), by applying the quasilineariza-
tion technique on the nonlinear term, for the reasonable 
initial guess of the form of Eq. (4) is given by:

Thus, the nonlinear term F
(

x, t,u, ∂u
∂x

)

 can be linearized 
initially as:

Substituting Eq.  (6) into Eq.  (2) and inducing for iter-
ation number i , we obtain the linearized differential 
equation.

where 

a(i)(x, t) = −
∂F

∂
(

∂u
∂x

)

∣

∣

∣

∣

∣

(

x, t,u(i), ∂u(i)

∂x

)

, . . . b(i)(x, t)

= −
∂F

∂u

∣

∣

∣

∣

(

x, t,u(i), ∂u(i)

∂x

)

,

 

f (i)(x, t) = F

(

x, t,u(i),
∂u(i)

∂x

)

− u(i)
∂F

∂u

∣

∣

∣

∣

(

x, t,u(i) , ∂u(i)

∂x

)

−
∂u(i)

∂x

∂F

∂
(

∂u
∂x

)

∣

∣

∣

∣

∣

(

x, t,u(i) , ∂u(i)

∂x

)

.

Let N be a positive integer different from one, then 
discretize the interval [0, T ] on the temporal direction 
with uniform step length k. Hence, the interval [0, T ] is 

(5)u(0)(x, t) = u0(x) exp(−π2t).

(6)

F

(

x, t,u(1),
∂u(1)

∂x

)

∼= F

(

x, t,u(0),
∂u(0)

∂x

)

+

(

u(1) − u(0)
) ∂F

∂u

∣

∣

∣

∣

u(0)

+

(

∂u(1)

∂x
−

∂u(0)

∂x

)

∂F

∂
(

∂u
∂x

)

∣

∣

∣

∣

∣

∂u(0)

∂x

.

(7)

∂u(i+1)

∂t
− ε

∂2u(i+1)

∂x2
+ a(i)(x, t)

∂u(i+1)

∂x

+ b(i)(x, t)u(i+1) = f (i)(x, t),
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partitioned into N equal sub-intervals with each nodal 
point satisfies: 0 = t0 < t1 < · · · < tN = T . Thus, the 
temporal nodal points are generated by

Using Taylor’s series expansion, we have:
un+1(x) = un(x)+ k ∂un(x)

∂t +
k2

2

∂2un(x)
∂t2

+
k3

6

∂3un(x)
∂t3

+ · · ·   , 
which gives:

where the truncation term is 
TE = − k

2
∂2un(x)
∂t2

 . This indi-
cates, the error estimate:

for the arbitrary constant C = 1
2

∥

∥

∥

∂2un(x)
∂t2

∥

∥

∥

∞
 . Substituting 

Eq.  (9) into Eq.  (7) gives the semi-discrete differential 
equation of the form:

Let us consider the singularly perturbed convection–
diffusion differential equation of the form:

where η > 0 and θ ≥ 0 are constants. Then, Eq. (12) has 
two linearly independent solutions as:

for the constants �1 =
−η+

√
η2+4εθ

2ε
, and �2 =

−η−
√

η2+4εθ

2ε
 . Let M be is a positive integer, and the 

interval [0, 1] on the spatial direction be divided 
into M equal sub-intervals through the nodes 
xm = mh, m = 1

M , m = 0, 1, . . . ,M , and the 
approximate solution to u(x) at the grid points x′ms is 
denoted by u′ms . The theory of difference (see [12]), shows 
that the second-order linear difference equation:

(8)tn = nk , k =
T

N
, n = 0, 1, . . . ,N .

(9)∂un

∂t
∼=

un+1(x)− un(x)

k
+ TE,

(10)�E�∞ ≤ Ck ,

(11)











�

−ε
∂2u(i+1)

∂x2
+ a(i)

∂u(i+1)

∂x
+

�

b(i) +
1

k

�

u(i+1)

�

(x, tn+1) =

�

f (i) +
1

k
u(i)

�

(x, tn+1),

u(x, 0) = u0(x), x ∈ [0, 1], u(0, tn+1) = s0(tn+1), u(1, tn+1) = s1(tn+1).

(12)
ε
d2u(x)

dx2
+ η

du(x)

dx
− θu(x) = 0, x ∈ (0, 1),

(13)u1(x) = exp(�1x), and u2(x) = exp(�2x),

(14)
um−1(exp(�2h)− exp(�1h))

− um(exp(�2 − �1)h− exp(�1 − �2)h)

+ um+1(exp(−�1h)− exp(�2h)) = 0.

Substituting the values of �1 and �2 into Eq. (13), we get:

This Eq. (15) is the exact difference scheme of Eq. (12), 
in the wisdom that the difference Eq.  (15) has the gen-
eral solution um = C1 exp(�1xm)+ C2 exp(�2xm) as the 
differential Eq.  (12). Since, θ ≥ 0 , we require the exact 
scheme for the reduced case. To this end, the exact 
scheme corresponding to ε d2u(x)

dx2
+ η du(x)

dx
= 0. Thus, 

Eq. (15) is deduced to:

Multiplying both sides of Eq. (16) by exp
(

ηh
2ε

)

 , and incor-
porating the term um+1 − um into this equation, we get:

Consequently, Eq. (17) can be transformed into:

where φ2 = hε
η

(

exp( ηh
ε
)− 1

)

.
When we come to the Burger-Huxley equation, the dif-

ferential equation under consideration the full discretiza-
tion of DN

M , denoting to approximation u(xm, tn) by Un
m . 

Then, the nonstandard finite difference rules developed 
for ODE above can be extended for PDE is given by:

(15)

um−1 exp

(

−ηh

2ε

)

− 2 cosh

(

h
√

η2 + 4εθ

2ε

)

+ um+1 exp

(

ηh

2ε

)

= 0.

(16)
um−1 exp

(

−ηh

2ε

)

− 2 cosh

(

ηh

2ε

)

um

+ um+1 exp

(

ηh

2ε

)

= 0.

(17)

um−1 − 2um + um+1 + (um+1 − um)

(

exp

(

ηh

ε

)

− 1

)

= 0.

(18)ε
um−1 − 2um + um+1

φ2
+ η

um+1 − um

h
= 0,

(19)


































LNMU ∼=− ε

�

Un+1
m−1 − 2Un+1

m + Un+1
m+1

φ2
m

�i+1

+

�

an+1
m

�i+1
�

Un+1
m −Un+1

m−1

h

�i+1

+

�

�

bn+1
m

�i+1
+

1

k

�

�

Un+1
m

�i+1
=

�

f n+1
m

�i+1
+

1

k

�

Un
m

�i+1
,

U0
m =u0(xm), Un+1

0 = s0(tn+1), Un+1
M = s1(tn+1),
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where i = 0, 1, ... iteration number, and 
φ2
m = hε

an+1
m

(

exp
(

han+1
m
ε

)

− 1
)

.

Stability of the scheme
A partial differential equation is well-posed if the solution 
of the partial differential equation is exists, and depends 
continuously on the initial condition and boundary con-
ditions. The Von Neumann stability technique is applied 
to investigate the stability of the developed scheme in 
Eq. (19), by assuming that the solution of Eq. (19) at the 
grid point (xm, tn) is given by:

where i =
√
−1, θ is the real number and ξ is the ampli-

tude factor.
Now, considering at the first iteration and putting 

Eq.  (20) into the homogeneous scheme part of Eq.  (19) 
gives:

Then, solving for the amplitude factor ξ , yields:

The condition of stability is ξ ≤ 1 and for sufficiently 
small k, we have ξ = 1 . Hence, the scheme given in 
Eq. (19) is stable. Thus, the scheme in Eq. (19) is uncondi-
tionally stable.

Consistency of the scheme
The local truncation error T (h, k) between the operator 
on the exact solution unm to Eq.  (7) and the approximate 
solution Un

m to Eq. (19) at the fixed i = 0 iteration is given 
by:

(20)Un
m = ξn eimθ .

−ε

φ2
m

(

ξn+1 ei(m−1)θ −2 ξn+1 eimθ + ξn+1 ei(m+1)θ
)

+
an+1
m

h

(

ξn+1 eimθ − ξn+1 ei(m−1)θ
)

+ bn+1
m ξn+1 eimθ +

1

k

(

ξn+1 eimθ − ξn eimθ
)

= 0.

ξ =

1
k

−ε
φ2
m

(

e−iθ −2+ eiθ
)

+
an+1
m
h

(

1− e−iθ
)

+ bn+1
m + 1

k

=
1

1− −εk
φ2
m

(

e−iθ −2+ eiθ
)

+
kan+1

m
h

(

1− e−iθ
)

+ kbn+1
m

.

(21)

T (h, k) =
∂un+1

m

∂t
− ε

∂2un+1
m

∂x2
+ an+1

m

∂un+1
m

∂x
+ bn+1

m un+1
m

−

(

Un+1
m −Un

m

k
− ε

Un+1
m+1

− 2Un+1
m +Un+1

m−1

φ2
m

+ an+1
m

Un+1
m −Un+1

m−1

h
+ bn+1

m Un+1
m

)

.

Using Taylor’s series expansion, we have:

Substituting Eqs. (22)–(24) into Eq. (21), which implies:

Now, the values of φ2
m provided in Eq.  (19) can be 

expanded as:

Thus, the truncation error is

Therefore, the norm of the local truncation error can 
be written as:

where C1 =
1
2

∥

∥

∥

∂2un+1
m

∂t2

∥

∥

∥

∞
, and C2 =

1
2

∥

∥

∥
an+1
m

∂2un+1
m

∂x2

∥

∥

∥

∞
.

To accelerate the rate of convergence, we apply the 
Richardson extrapolation techniques on Eq. (27). Assume 
that U(h, k) denote the approximate value of u(xm, tn) 
with the mesh length of h and k. The approximate solu-
tion U

(

h
2 ,

k
2

)

 also denotes the value of u(xm, tn) obtained 
by using the same method with step length h2 and k2 , then 
the order of convergence for the two approximate solu-
tions can be written as:

where C is a constant independent of the perturbation 
and mesh parameters.

Eliminating C from Eq. (28), gives:

(22)Un+1
m −Un

m

k
=

∂un+1
m

∂t
+

k

2

∂2un+1
m

∂t2
+ O(k2).

(23)Un+1
m+1 − 2Un+1

m + Un+1
m−1 = h2

∂2un+1
m

∂x2
+ O(h4).

(24)Un+1
m − Un+1

m−1

h
=

∂un+1
m

∂x
+

h

2

∂2un+1
m

∂x2
+ O(h2).

(25)

T (h, k) =−
k

2

∂2un+1
m

∂t2
−

h

2
an+1
m

∂2un+1
m

∂x2

−

(

1−
h2

φ2
m

)

ε
∂2un+1

m

∂x2
+ O(h2 + k2).

φ2
m = h2 +

h3

2!

an+1
m

ε
+

h4

3!

(

an+1
m

ε

)2

+
h5

4!

(

an+1
m

ε

)3

+ · · · .

(26)
T (h, k) = −

k

2

∂2un+1
m

∂t2
−

h

2
an+1
m

∂2un+1
m

∂x2
+ O(h2 + k2).

(27)
∣

∣T (h, k)
∣

∣ =

∣

∣

∣
L
(

un+1
m − Un+1

m

)∣

∣

∣
≤ C1h+ C2k ,

(28)











u(xm, tn)− U(h, k) ≡ C(h+ k)+ O(h2 + k2),

u(xm, tn)− U

�

h

2
,
k

2

�

≡ C

�

h

2
+

k

2

�

+ O(h2 + k2),
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Let us denote the combination of the two approximate 
solutions in Eq. (29) by:

Then, it is re-written as:

This indicates the method is accelerated to second-
order. Hence, we have

Therefore, the proposed method is second-order 
uniformly convergent. Thus, the right hand side hand 

of Eq.  (27) vanishes as k → 0 and h → 0 implies 
T (h, k) → 0 . Hence, the scheme is consistent with the 
order of convergence O

(

k2+ h2
)

 . Ended, the scheme 

developed in Eq.  (19), is convergent. A consistent and 
stable finite difference method is convergent by Lax’s 
equivalence theorem [2]. For further convergence analy-
sis, one can see the works provided in [5, 11, 13, 14].

Numerical illustration and discussions
The exact solution for the considered examples is not 
available. Hence, the maximum absolute errors are cal-
culated by the double mesh principle, [6], for before and 
after applying the Richardson extrapolation technique 
respectively by:

(29)

u(xm, tn)− 2U

(

h

2
,
k

2

)

+ U(h, k) ≡ O(h2 + k2).

Uext
(h,k) = 2U

(

h

2
,
k

2

)

+U(h, k).

(30)u(xm, tn)− Uext
(h,k) = O(h2 + k2).

(31)
∣

∣

∣
u(xm, tn)−Uext

(h,k)

∣

∣

∣
≤ C(h2 + k2).

where Un
m and U2n

2m are approximate solutions evaluated 
on DN

M and D2N
2M respectively. Similarly, its extrapolated 

are induced. The corresponding rate of convergences is 
determined by:

Example 1.  Consider the singularly perturbed Burgers-
Huxley equation:

Example 2.  Consider the following singularly per-
turbed Burgers’ equation:

Tables  1 and 2 show the maximum absolute errors 
that demonstrate the validity of the present method 
and errors are monotonically decreasing behavior with 
increasing the number of intervals which confirm the 
convergence of the method. Table  3 validate that the 
corresponding rate of convergence. Thus, the proposed 
method is second-order convergent. Furthermore, the 
method gives a more accurate solution than some exist-
ing methods in the literature.

EN
M = max

∀(xm,tn)∈D

∣

∣

∣
Un
m − U2n

2m

∣

∣

∣
, and

(

EN
M

)ext

= max
∀(xm,tn)∈D

∣

∣

∣

∣

(

Un
m

)ext
−

(

U2n
2m

)ext
∣

∣

∣

∣

,

RN
M =

log(EN
M)− log(E2N

2M)

log(2)
, and

(

RN
M

)ext

=
log

(

(

EN
M

)etx
)

− log
(

(

E2N
2M

)ext
)

log(2)
.











�

∂u

∂t
− ε

∂2u

∂x2
+ u

∂u

∂x
− (1− u)(u− 0.5)u

�

(x, t) = 0, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x(1− x2), 0 < x < 1, u(0, t) = u(1, t) = 0, t ∈ [0, 1].











�

∂u

∂t
− ε

∂2u

∂x2
+ u

∂u

∂x

�

(x, t) = 0, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x(1− x2), 0 < x < 1, u(0, t) = u(1, t) = 0, t ∈ [0, 1].
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Conclusion
The accelerated nonstandard finite difference method is 
presented for solving the singularly perturbed Burger-
Huxley equation. The nonlinear terms are linearized by 
the quasilinearization technique. First-order finite dif-
ference approximation for the discretization of a time 
derivative and the nonstandard methodology of Micken’s 
procedure is applied for the spatial derivatives. To accel-
erate the convergence of the method, the Richardson 

extrapolation technique is applied. It is provided that 
from numerical results, the method gives a better accu-
rate solution with a higher order of convergence than 
some existing methods in the literature. Therefore, the 
presented method is second-order convergent and gives 
an accurate solution for solving the singularly perturbed 
Burger-Huxley equation.

Table 1  Comparison of maximum absolute errors for Example 1

ε ↓ M/N → 32/20 64/40 128/80 256/160 512/320

After extrapolation

2
−6 1.1939e−04 3.4613e−05 9.3412e−06 4.2951e−06 2.3138e−06

2
−8 1.7054e−04 5.6853e−05 1.5929e−05 4.2117e−06 1.0822e−06

2
−10 2.1124e−04 1.0056e−04 3.8345e−05 1.1640e−05 3.1477e−06

2
−12 2.0194e−04 7.9291e−05 5.5162e−05 3.0062e−05 1.0964e−05

2
−18 2.7271e−04 7.2971e−05 1.8774e−05 4.6058e−06 1.8644e−06

Before extrapolation

2
−6 3.3878e−03 1.7453e−03 8.8211e−04 4.4321e−04 2.2212e−04

2
−8 4.0171e−03 2.0163e−03 1.0020e−03 4.9855e−04 2.4852e−04

2
−10 4.4610e−03 2.2241e−03 1.0800e−03 5.2600e−04 2.5871e−04

2
−12 4.6996e−03 2.4258e−03 1.2014e−03 5.7660e−04 2.7486e−04

2
−18 4.7584e−03 2.5003e−03 1.2810e−03 6.4852e−04 3.2604e−04

Results in [6]

2
−6 2.5289e−02 1.7672e−02 9.0066e−03 4.8378e−03 2.5035e−03

2
−8 3.8607e−02 1.9497e−02 1.1221e−02 6.2852e−03 3.3405e−03

2
−10 9.3183e−02 7.0120e−02 4.4773e−02 2.0546e−02 1.0545e−02

2
−12 1.7017e−01 1.0083e−01 6.2216e−02 3.9526e−02 2.0493e−02

2
−18 2.5614e−01 2.1031e−01 1.3406e−01 8.5618e−02 4.8834e−02

Table 2  Comparison of maximum absolute errors for Example 2

ε ↓ M/N → 32/20 64/40 128/80 256/160 512/320

After extrapolation

2
−6 1.0956e−04 2.8034e−05 7.6248e−06 4.1959e−06 2.2851e−06

2
−8 1.5301e−04 4.9218e−05 1.3827e−05 3.6543e−06 9.3878e−07

2
−10 2.0315e−04 9.4930e−05 3.6697e−05 1.1291e−05 3.0711e−06

2
−12 1.9354e−04 8.7202e−05 5.8753e−05 3.1369e−05 1.1375e−05

2
−18 2.7286e−04 7.2496e−05 1.8396e−05 4.4949e−06 2.6628e−06

Results in [6]

2
−6 3.8767e−02 1.8983e−02 9.6122e−03 5.0867e−03 2.6211e−03

2
−8 4.4450e−02 2.0109e−02 1.0519e−02 5.9653e−02 3.1896e−03

2
−10 8.3339e−02 6.6120e−02 4.0769e−02 1.9284e−02 9.1775e−03

2
−12 1.8762e−01 8.4106e−02 5.7234e−02 3.309e−02 1.9041e−02

2
−18 2.8299e−01 1.7036e−01 1.1805e−01 7.4251e−02 4.1879e−02
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Table 3  Comparison of rate of convergence for Example 1

ε ↓ M/N → 32/20 64/40 128/80 256/160

After extrapolation

2
−6 1.9098 1.9894 1.7283 1.6506

2
−8 1.8727 1.9458 1.9784 1.9936

2
−10 1.8710 1.9392 1.9706 1.9868

2
−12 1.8715 1.9350 1.9696 1.9852

2
−18 1.8713 1.9339 1.9692 1.9845

Before extrapolation

2
−6 0.8839 0.9566 0.9989 1.0228

2
−8 0.8839 0.9566 0.9989 1.0228

2
−10 0.8769 0.9385 0.9695 0.9851

2
−12 0.8778 0.9388 0.9686 0.9846

2
−18 0.8782 0.9390 0.9679 0.9845

Results in [6]

2
−6 0.5170 0.9724 0.8966 0.9504

2
−8 0.9856 0.7971 0.8362 0.9119

2
−10 0.4102 0.6472 1.1238 0.9623

2
−12 0.7550 0.6966 0.6544 0.9477

2
−18 0.2844 0.6496 0.6469 0.8100

Limitations
During the quasi-linearization process we used only the 
first iteration. If more number of iterations were done, 
the proposed scheme can have more accurate solution 
than the existing results. Further, the scheme can more 
illustrate the physical behaviour of the problem under 
consideration.
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