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Abstract 

Objective:  Centrally administered estrogen can increase sympathetic nerve activity to brown adipose tissue, result-
ing in thermogenesis. The central thermogenic effects of estrogen have not been investigated in males. Therefore, 
this study sought to investigate the effects of peripherally and centrally administered estrogen on thermogenesis, 
heart rate and mean arterial pressure in male rats. Thermogenesis was assessed by monitoring brown adipose tissue 
temperature.

Results:  Peripherally administered estrogen elicited no significant effect on brown adipose tissue temperature, heart 
rate or mean arterial pressure. Centrally administered estrogen elicited a coincident increase in both brown adipose 
tissue and core temperature. Centrally administered estrogen also resulted in a decrease in mean arterial pressure but 
had no effect on heart rate. With the present data it is not possible to elucidate whether changes in temperature were 
the result of thermogenic or thermoregulatory mechanisms.
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Introduction
Decreased brown adipose tissue (BAT) activity has 
been implicated in post-menopausal body weight gain. 
Ovariectomy is an experimentally induced animal 
model for menopause [9], where rats gain significant 
weight. Importantly, peripheral administration of exog-
enous estrogen is sufficient for normal bodyweight to 
be restored [8, 13, 19]. Estrogen also has potential for 
increasing BAT sympathetic nerve discharge (SND) and 
BAT thermogenesis in females [2, 11, 17]. Several lines 
of evidence suggest that the presence of estrogen recep-
tor alpha (Esr1) within the ventromedial nucleus of the 
hypothalamus (VMH) is implicated in the regulation of 
BAT SND. Adenovirus mediated knockout of Esr1 recep-
tors in the VMH results in weight gain [12]. Further, 

intracerebroventricular (ICV) administration of estrogen 
can increase BAT SND in ovariectomised rats. The same 
injections also increased the protein products of imme-
diate early gene markers of activity (e.g. cFos protein) in 
VMH neurons [9].

Existing literature on male responses to estrogen is 
limited and studies that do include males give equivocal 
results [16]. For example, a deficiency of the G-protein 
coupled estrogen receptor (Gper) or Esr1 in male mice 
induces insulin resistance and obesity [4, 15], however 
it was not established whether an increase in Gper or 
Esr1 signaling would have the opposite effect. Periph-
eral administration of estrogen increases physical activ-
ity in male rats, but to a lesser degree than females [10]. 
Estrogen is the primary female sex hormone, however, it 
is important to study its action in males. One example 
of clinical translation in this area relates to transwomen 
(individuals assigned as male at birth, but who now 
identify with feminine gender expression). Transwomen 
undergoing feminizing hormone therapy (antiandrogen 
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and exogenous estrogen) have been reported to suffer 
an increase in body mass index (BMI) and adiposity [5]. 
Hormone therapy among transwomen has also been cor-
related with increased cardiovascular morbidity [1, 3]. It 
remains unclear whether these side effects are mediated 
by antiandrogen or estrogen mechanisms, or a combina-
tion thereof.

Both peripheral administration (intraperitoneal (IP), 
intravenous (IV) or subcutaneous (SC) injection) and 
central administration (intracerebroventricular (ICV) 
injection) of estrogen successfully elicit an increase in 
BAT thermogenesis in female rats [8, 9, 12, 19]. There 
is limited literature assessing the metabolic outcomes of 
these interventions in male rats. Therefore, the aim of 
these experiments is to investigate whether peripheral or 
central administration of estrogen acutely stimulates BAT 
thermogenesis in male rats. A secondary aim is to assess 
if estrogen stimulates any adverse side effects on the car-
diovascular system (changes to heart rate or MAP).

Main text
Materials and methods
To test whether estrogen influences iBAT thermogenesis 
we employed a parallel study design. Estrogen or vehi-
cle was administered either peripherally (via IP injec-
tion, vehicle = sesame oil), or centrally (via ICV injection, 
vehicle = saline + 10% DMSO). These protocols have 
been used previously [18] and are described briefly here.

Animals
Male Sprague-Dawley rats (Monash Animal Services) 
(350–400 g) were randomly allocated to one of the four 
treatment groups (IP control, IP estrogen, ICV control, 
ICV estrogen), by use of a random number generator. 
Confounders were controlled by randomizing the order 
of treatments. Two investigators were involved in all 
experimental steps; one primary (blinded) and one assis-
tant (unblinded). The assistant investigator was respon-
sible for allocation of rats and preparing the treatment/
control to be administered during the experiment, while 
maintaining blinding of the primary investigator. The 
primary investigator was responsible for conduction of 
the experiment and the outcome assessment. The pri-
mary investigator was unblinded for data analysis. One 
rat was considered one experimental unit. A power 
analysis was performed a priori using G-Power, based 
on data extracted from Martinez de Morentin et al. [9]. 
Assuming an increase in iBAT temperature of 0.7  °C, 
with a standard deviation of 0.56  °C, following 10 μg/kg 
administration of estrogen via IP injection. This power 
analysis indicated that eight animals per treatment group 
were required. All experiments performed in this study 
were approved by the La Trobe University Animal Ethics 

Committee (Ethics approval number: AEC16-02). Anes-
thetic depth was routinely monitored in compliance with 
animal ethics standards. All efforts were made to limit 
the number of animals used and their suffering. Criteria 
for including or excluding animals or data were not estab-
lished a priori. Data from experiments that were termi-
nated early, or suffered prolonged delay (> 7 h) between 
anesthetic induction and administration of interven-
tion due to surgical complications, were not included in 
analyses.

Experimental procedure
Rats in the IP administration group were injected with 
estrogen (5–10  µg/kg/0.3  ml, Sigma-Aldrich) [9] or 
sesame oil (vehicle only, 0.3 ml, Sigma-Aldrich). Rats in 
the ICV administration group were injected with estro-
gen (20  ng/200  nl) or saline + 10% dimethyl sulfoxide 
(DMSO) (vehicle only, 200  nl, Sigma-Aldrich). Four 
hours post administration of treatment, the animals 
were euthanized by transcardial perfusion under ure-
thane-anesthesia, and the brains were prepared for cFos 
immunohistochemical analysis. Tissue processing and 
immunohistochemistry was performed as described by 
Lawther et al. [7]. Complete details of the cFos immuno-
histochemistry method are in Additional file 1.

Statistical analysis
Statistical analysis of all outcomes (temperature, heart 
rate, MAP) was performed using GraphPad PRISM 9. 
Averages of iBAT temperature, core temperature, heart 
rate, and MAP were calculated over 1-min at 5-min 
intervals, until 210-min post intervention. These data 
were then expressed as a change from baseline. Statisti-
cal significance was tested using a two-way mixed-model 
ANOVA. Separate ANOVAs were conducted for each 
administration method (IP-control versus IP-estrogen, 
and ICV-control versus ICV-estrogen). ANOVAs are 
parametric tests, that assume normally distributed data. 
Normality tests were performed, which indicated several 
variables were not normally distributed, likely because of 
small values for n. ANOVAs were still used because the 
central limit theorem states that given sufficient sam-
ples, sample distribution will be normal, regardless of the 
underlying population distribution [6].

Results
Central vs peripheral effects of estrogen on iBAT and core 
temperature
Core and iBAT temperature were both monitored via 
thermocouples. Heart rate and blood pressure were 
measured using an indwelling catheter inserted in the 
carotid artery. A stable baseline was ensured for a mini-
mum of 30  min prior to injection. No differences in 
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temperature baseline conditions occurred although some 
differences in cardiovascular baseline conditions were 
evident between treatment groups (Table 1).

Following IP administration of estrogen no interaction 
effect (time × treatment) was observed for iBAT temper-
ature (F(43, 473) = 0.25, p > 0.99, Fig. 1A), or core tempera-
ture (F(43, 473) = 0.50, p > 0.99, Fig.  1C). Šidák’s multiple 
comparisons test revealed no significant difference in 
iBAT temperature at any time point (at 150  min: mean 
difference = 0.14  °C, p > 0.99, 95% C.I. [− 1.37, 1.67]), or 

core temperature (at 150 min: mean difference = 0.24 °C, 
p > 0.99, 95% C.I. [− 1.02, 1.49]).

A significant interaction effect on iBAT temperature 
was observed following ICV administration of estro-
gen (F(43, 559) = 2.25, p < 0.001, Fig.  1B). A corresponding 
rise in core temperature was observed following ICV 
injection of estrogen (F(43, 559) = 1.60, p = 0.01, Fig.  1D). 
Despite the overall significant difference in response, 
between ICV control and ICV estrogen treated rats, 
Šidák’s multiple comparisons test showed no significant 

Table 1  Average baseline of physiological metrics, 15-min prior to administration of intervention, ± represents SD

Statistical testing indicates some difference between estrogen and control conditions with the same routes of administration (IP or ICV) in cardiovascular baseline 
conditions prior to intervention. p-value calculated by unpaired, two-tailed t-test, n = 6 for IP-control; n = 7 for IP-estrogen and ICV-control; n = 8 for ICV-estrogen. 
*Indicates p < 0.05, **indicates p < 0.01, ***indicates p < 0.001. One rat was excluded from the IP-control group due to a procedural error. Two rats were excluded from 
the ICV-estrogen group due to prolonged (< 7 h) surgical complications experienced

Route of 
administration

Treatment Core temperature (°C) iBAT temperature (°C) Heart rate (bpm) MAP (mmHg)

IP Control 36.42 ± 0.20 34.71 ± 0.62 387 ± 27 133.00 ± 5.92

IP Estrogen 36.50 ± 0.30 34.90 ± 1.23 426 ± 49 145.77 ± 9.14**

ICV Control 36.60 ± 0.27 35.65 ± 0.72 394 ± 33 120.90 ± 15.24

ICV Estrogen 36.37 ± 0.46 34.82 ± 0.69 427 ± 17* 160.27 ± 7.37***

Fig. 1  Changes in temperature (Δ Temperature °C) of interscapular brown adipose tissue (iBAT) and core, in male rats following injection 
(time = zero) of estrogen or vehicle. Temperature of iBAT following A IP injection or B ICV injection. Core temperature following C IP injection or D 
ICV injection. Error bars represent SD. Statistical significance was tested using a two-way mixed model ANOVA. Separate ANOVAs were conducted 
for each route of administration (IP-control versus IP-estrogen, and ICV-control versus ICV-estrogen). n = 6 for IP-control; n = 7 for IP-estrogen and 
ICV-control; n = 8 for ICV-estrogen. One rat was excluded from the IP-control group due to a procedural error. Two rats were excluded from the 
ICV-estrogen group due to prolonged (< 7 h) surgical complications experienced
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difference at any given time point. iBAT temperature (at 
150 min: mean difference = − 0.93  °C, p = 0.71, 95% C.I. 
[− 2.52, 0.66]), core temperature (at 150 min: mean dif-
ference = − 0.68 °C, p = 0.96, 95% C.I. [− 2.18, 0.82]). The 
varied response to estrogen administered via ICV injec-
tion is illustrated by the individual traces for each rat 
(Additional file 2: Figure S1).

Central estrogen influences MAP, but not heart rate
Following administration of estrogen by IP injection, 
no significant effect was observed on heart rate (F(44, 

484) = 0.66, p > 0.95, Fig.  2A) or MAP (F(43, 473) = 0.82, 
p > 0.78, Fig. 2C). Šidák’s multiple comparisons test found 
no significant difference in heart rate (at 150 min: mean 
difference = − 11 bpm, p > 0.99, 95% C.I. [− 162, 139]), or 
MAP (at 150  min: mean difference = 7  mmHg, p > 0.99, 
95% C.I. [− 33.25, 47.88]).

Following ICV administration of estrogen no signifi-
cant effect was observed on heart rate (F(44, 572) = 1.20, 
p > 0.18, Fig.  2B), however a decrease MAP (F(43, 

559) = 1.43, p > 0.041, Fig.  2D) was identified. Despite 
the overall significant difference in MAP, between 
ICV control and ICV estrogen treated rats, Šidák’s 

multiple comparisons test found that there was no 
significant difference in heart rate at any given time 
point (at 150  min: mean difference = 12  bpm, p > 0.99, 
95% C.I. [− 59, 83]), or MAP (at 150 min: mean differ-
ence = 3.18 mmHg, p > 0.99, 95% C.I. [− 26.44, 32.80]). 
Additional file 3: Figure S2 shows individual heart rate 
and MAP traces for each rat.

cFos expression
Following temperature, heart rate and blood pressure 
monitoring, animals were transcardially perfused, and 
brains extracted. cFos immunoreactivity (cFos-IR) was 
assessed within specific diencephalic nuclei but no sig-
nificant changes were detected (Additional file 4: Figure 
S3).

Comparison of control data
Control temperature, heart rate and MAP data were 
compared to data from Van Schaik et al. [18]. No differ-
ences were identified between the two studies for any 
metrics (Additional file 1: Table S1).

Fig. 2  Changes in heart rate (Δ Heart Rate) and mean arterial pressure (Δ MAP), in male rats following injection (time = zero) of estrogen or vehicle. 
Change in heart rate following A IP injection or B ICV injection. Change in MAP following C IP injection or D ICV injection. Error bars represent 
SD. Statistical significance was tested using a two-way mixed model ANOVA. Separate ANOVAs were conducted for each route of administration 
(IP-control versus IP-estrogen, and ICV-control versus ICV-estrogen). n = 6 for IP-control; n = 7 for IP-estrogen and ICV-control; n = 8 for ICV-estrogen. 
One rat was excluded from the IP-control group due to a procedural error. Two rats were excluded from the ICV-estrogen group due to prolonged 
(< 7 h) surgical complications experienced
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Discussion
Outcomes observed in this study indicate that estrogen 
had no significant effect on iBAT temperature or core 
temperature when administered peripherally. Centrally 
administered estrogen significantly increases iBAT and 
core temperature in male rats. Peripheral administra-
tion of estrogen did not effect heart rate or MAP. Central 
administration of estrogen elicited a decrease in MAP, 
but not heart rate.

The findings from these experiments reiterate find-
ings from a previous systematic review, that thermogenic 
effects of estrogen in male rodents are diminished or 
altogether absent relative to females [16]. One possible 
explanation for the diminished thermogenic response is 
that the presence of endogenous testosterone modulates 
receptor expression. Brown adipocytes (primary cell line) 
cultured in the presence of testosterone express relatively 
more α2A-adrenoceptors, and fewer β3-adrenoceptors 
[14]. As activating α2A-adrenoceptors inhibits BAT ther-
mogenesis, and activating β3-adrenoceptors stimulates 
BAT thermogenesis, biasing the expression ratio towards 
α2A-adrenoceptors desensitises the tissue to noradrena-
line [14]. Therefore, incubating brown adipocytes in 
testosterone results in cells that are more resistant to 
sympathetic activation by noradrenaline [14].

Given the differences that have been identified in the 
baseline conditions of our cardiovascular data, control 
data were compared to previously published work that 
used similar protocols [18]. Different vehicles were used 
as Van Schaik et al. [18] used saline for both IV and ICV 
injection, while this study used sesame oil by IP injection 
and 10% DMSO for ICV injection. No significant dif-
ferences were found in the mean changes in the control 
temperature, heart rate or MAP between the two stud-
ies (Additional file 1: Table S1). Given the comparability 
of this data being from the same laboratory, using the 
same protocol, observed over the same time frame; we 
can offer no explanation for the differences in cardiovas-
cular metrics between groups at baseline in this study. 
However, findings related to changes in cardiovascular 
metrics may result from these differences in baseline 
conditions. But, differences in anesthetic depth can be 
ruled out as regular monitoring was performed. Animals 
were also in good health as evidenced by absence of fever.

Although we observed no significant increase or 
decrease in thermogenesis following peripheral adminis-
tration of estrogen, we did observe an increase in iBAT 
temperature following central administration. Estrogen 
can increase sympathetic nerve activity in female rats, 
leading to an increase in iBAT temperature [9]. In this 
study, a significant change in iBAT temperature occurred 
in male rats, however this was accompanied by a coin-
cident change in core temperature. These coincident 

observations raise the possibility that increases in iBAT 
temperature are secondary to the core temperature 
increase, and not the other way around. Although it is 
possible to separate evoked thermogenic response from 
core temperature changes [18] by assessing cFos expres-
sion in known thermogenic central neural circuits. 
Unfortunately, we were unable to assess activation of spe-
cific nuclei by cFos expression due to tissue quality prob-
lems leaving insufficient samples for statistical analysis 
(n = 3). This under-powered data does not indicate any 
substantive difference in cFos expression between any 
nucleus or treatment group.

In both routes of administration (peripheral and cen-
tral), responses for estrogen treated animals were more 
highly varied than those of the control animals. A highly 
inconsistent response to estrogen observed in this study 
highlights a need for further research. In particular, 
research that addresses concerns surrounding trans-
women undergoing hormone therapy. These individuals 
have been reported to have increased BMI and adiposity 
[5], and increased cardiovascular morbidity [1, 3]. Fur-
ther investigation is required into the effects of estrogen 
in males, and the mechanisms through which it is elic-
iting these effects. If any central pathways are involved, 
it may facilitate development of new hormone therapies 
or dosing regimens to produce the desired secondary 
sex characteristics, without unwanted side effects for 
transwomen.

Conclusion
Peripheral administration of estrogen elicited no sig-
nificant effects on iBAT temperature, core temperature, 
heart rate, or MAP in male rats. However, an increase in 
iBAT and core temperature was observed in response to 
estrogen administered via ICV injection. These findings 
reiterate those of a recent systematic review [16]; males 
have a diminished (or absent) thermogenic response to 
estrogen compared to females. The inconsistent nature of 
the responses to estrogen highlights the need for further 
research into the effects of estrogen in males. This area of 
research is potentially important for negating metabolic 
and cardiovascular side effects in transwomen undergo-
ing hormone therapy.

Limitations
Differences in MAP between groups, at baseline, is 
one limitation of the present study. This series of 
experiments were performed in parallel with another, 
published set of experiments [18], following identi-
cal procedures where no significant differences were 
observed among baseline conditions. Further, control 
data obtained from experiments, during post-interven-
tion observational period was comparable between the 
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two studies (Additional file 1: Table S1). As such, we are 
unable to suggest any systematic reason why this data 
has baseline differences.

Core temperature increased, as well as iBAT tempera-
ture, so it is not possible to rule out thermoregulation as a 
cause. cFos immunoreactivity (cFos-IR) would have made 
it possible to visualize which nuclei had been activated or 
inhibited, following a given intervention. Obtaining evi-
dence about which nuclei were implicated in changes in 
iBAT and core temperature observed might have allowed 
inference of some underlying mechanisms. Without 
sufficient cFos expression data it is not possible to say 
whether thermogenic or thermoregulatory mechanisms 
were the cause of the increase in temperature observed. 
Molecular analysis of uncoupling protein 1 (UCP1) or 
downstream signaling of adrenergic receptors may also 
have helped determine the etiology of BAT temperature 
changes. Chronic experiments would provide data relat-
ing to changes in body weight and adiposity following 
estrogen treatment.
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of iBAT following A IP injection or B ICV injection. Core temperature 
following C IP injection or D ICV injection. n = 6 for IPcontrol; n = 7 for 
IP-estrogen and ICV-control; n = 8 for ICV-estrogen. One rat was excluded 
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dial nucleus of the hypothalamus; Arc = arcuate nucleus of the hypothala-
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nucleus of the hypothalamus; PVT = paraventricular nucleus of the thala-
mus; CM = centromedian nucleus of the thalamus; DMH = dorsomedial 
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