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Abstract 

Objectives:  We explored the results of fixed point, coincidence point and coupled coincidence point for the map-
pings in an ordered metric spaces. Our results generalized and extended the well-known results in the literature. 
Some numerical examples are provided for justifying the results obtained.

Result:  Some fixed point results are found for a self mapping in a partially ordered b-metric space which satisfies a 
generalized week contraction condition. Furthermore, these results are extended for two self mappings for obtaining 
coincidence point, coupled coincidence point and coupled common fixed point in the same context. A few examples 
are presented to support the findings.
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Introduction
A b-metric space also referred to as a metric type space 
by some researchers is one of the most influential gen-
eralizations of ordinary metric space. It has a wide range 
of uses in mathematical research and scientific applica-
tions. It was first established by Bakhtin in [7] and even-
tually expanded upon by Czerwik in [10]. Later, Aghajani 
et al. [1], Allahyari et al. [5] investigated some fixed point 
results of generalized contractive mappings in partially 
ordered b-metric space and then applied their results to 
quadratic integral equations. Common fixed point results 
for generalized weak contractions in the same con-
text was studied by Aghajani et  al. [2]. Also, the results 
on common fixed point for two self mappings under an 
implicit relation was explored by Akkouchi [3]. Some 
remarks on fixed point results in b-metric space were 

discussed by Aleksić et  al. [4]. Common fixed point for 
weak ϕ-contractions on b-metric spaces was examined 
by Aydi et  al. [6]. Recently, some results on fixed point, 
coincidence point, coupled coincidence point for the self 
mappings satisfying generalized weak contractions have 
been discussed by Belay et al. [8], Seshagiri Rao et al. [20, 
24, 25] in partially ordered b-metric space with necessary 
topological properties.

In this paper, we introduced the following general-
ized weak contraction condition which involve the alter-
ing distance functions φ̂ ∈ �̂ , ψ̂ ∈ �̂ defined below to 
acquire a fixed point of a mapping L :P → P in a par-
tially ordered b-metric space

for any ζ ,̟ ∈ P with ζ � ̟ , s > 1 and, where

(1)φ̂(s ð(L ζ ,L̟)) ≤ φ̂(C(ζ ,̟))− ψ̂(D(ζ ,̟)),
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and

Also generalized this result by involving two self map-
pings in the above generalized contraction condition to 
obtain a coincidence point, coupled coincidence point 
and common fixed point for the mappings in the same 
context. Our results are generalized and extended the 
results of Belay et al. [8], Bhaskar et al. [9], Harjani et al. 
[12] and Jachymski [14] and Seshagiri Rao et al. [20, 24, 
25]. The authors may refer the papers of Aghajani et  al. 
[1], Dorić et al. [11], Huaping Huang et al. [13], Roshan 
et  al. [18, 19] and Seshagiri Rao et  al. [21–23] for the 
basic definitions and necessary results which we used in 
the present study.

In the whole paper, we use the follow-
ing nations for the altering distance functions: 
�̂ = {φ̂/φ̂ is continuous, non-decrasing self

mapping on [0,+∞) with φ̂(ε) = 0 iff ε = 0, for ε ∈ [0,+∞)} 
and �̂ = {ψ̂/ψ̂ is lower semi-continuous self mapping

on [0,+∞) such that ψ̂(ε) = 0 if and only if ε = 0, where ε ∈ [0,+∞)}.

Main results
We start this section with the following fixed point result 
in a complete partially ordered b-metric space.

Theorem  2.1  Suppose (P,ð,�) be a complete par-
tially ordered b-metric space with s > 1. Assume that a 
continuous self mapping L on P is non-decreasing with 
respect to � and satisfies the condition (1). If for some 
ζ0 ∈ P such that ζ0 � L ζ0, then L has a fixed point in P.

Proof  The proof is trivial for L ζ0 = ζ0 , for some 
ζ0 ∈ P . Suppose not then ζ0 ≺ L ζ0 . Now define a 
sequence {ζn} ⊂ P by ζn+1 = L ζn , for n ≥ 0 . Since L is 
non-decreasing then

If for some n0 ∈ N , ζn0 = ζn0+1 , then from (2), L has a 
fixed point ζn0 . Assume that ζn  = ζn+1 for all n ≥ 1 . Since 
ζn > ζn−1 for all n ≥ 1 , then from (1), we have

C(ζ ,̟) = max

{

ð(̟ ,L̟)
[

1+ ð(ζ ,L ζ )
]

1+ ð(ζ ,̟)
,
ð(ζ ,L ζ ) ð(̟ ,L̟)

1+ ð(ζ ,̟)
, ð(ζ ,L ζ ), ð(̟ ,L̟), ð(ζ ,̟)

}

D(ζ ,̟) = max

{

ð(̟ ,L̟)
[

1+ ð(ζ ,L ζ )
]

1+ ð(ζ ,̟)
, ð(ζ ,̟)

}

.

(2)ζ0 ≺ L ζ0 = ζ1 � · · · � ζn � L ζn = ζn+1 � · · · .

Thus from (3), we have

where

If max{ð(ζn, ζn+1),ð(ζn−1, ζn)} = ð(ζn, ζn+1) for some 
n ≥ 1 , then from (4), we have

this is a contradiction. Hence, max{ð(ζn, ζn+1),ð(ζn−1, ζn)}

= ð(ζn−1, ζn) for all n ≥ 1 . Thus from (4) we have

Since 1
s

∈ (0, 1) then {ζn} is a Cauchy sequence from [4, 
6]. Also, the completeness of P implies that ζn → ε for 
some ε ∈ P .

Furthermore the continuity of L implies that,

(3)

φ̂(ð(ζn, ζn+1)) = φ̂(ð(L ζn−1,L ζn))

≤ φ̂(s ð(L ζn−1,L ζn))

≤ φ̂(C(ζn−1, ζn))

− ψ̂(D(ζn−1, ζn)).

(4)ð(ζn, ζn+1) = ð(L ζn−1,L ζn) ≤
1

s
C(ζn−1, ζn),

C(ζn−1, ζn) = max

{

ð(ζn,L ζn)
[

1+ ð(ζn−1,L ζn−1)
]

1+ ð(ζn−1, ζn)
,

ð(ζn−1,L ζn−1) ð(ζn,L ζn)

1+ ð(ζn−1, ζn)
,

ð(ζn−1,L ζn−1),

ð(ζn,L ζn),ð(ζn−1, ζn)
}

= max {ð(ζn, ζn+1),

ð(ζn−1, ζn) ð(ζn, ζn+1)

1+ ð(ζn−1, ζn)
, ð(ζn−1, ζn)

}

≤ max{ð(ζn, ζn+1), ð(ζn−1, ζn)}.

ð(ζn, ζn+1) ≤
1

s
ð(ζn, ζn+1),

(5)ð(ζn, ζn+1) ≤
1

s
ð(ζn−1, ζn).

L ε = L ( lim
n→+∞

ζn) = lim
n→+∞

L ζn = lim
n→+∞

ζn+1 = ε,
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which shows that L has a fixed point ε ∈ P . � �

We have the following result in which the mapping L 
is not continuous, still is valid to have a fixed point.

Theorem 2.2  According to Theorem 2.1, a non-continu-
ous self mapping L has a fixed point if P meets the condi-
tion (6):

Proof  As from Theorem  2.1, a non-decreasing Cauchy 
sequence {ζn} ⊆ P exists such that ζn → ε ∈ P . Hence 
from condition (6), ζn � ε for all n, i.e., ε = sup ζn.

Next to show that ε is a fixed point of L in P . Suppose 
that L ε  = ε . Let

and

As n → +∞ and the fact that lim
n→+∞

ζn = ε , we obtain 
that

and

Since ζn � ε for any n, then (1) becomes

Taking n → +∞ in (9) and from Eqs. (7) and (8), we get

which is a contradiction. Hence, L ε = ε , i.e., L has a 
fixed point ε in P . �

(6)
a non-decreasing sequence {ζn} ⊆ P such that

ζn → ε ∈ P then ζn � ε for n ∈ N,

that is, ε = sup ζn.

C(ζn, ε) =max

{

ð(ε,L ε)
[

1+ ð(ζn,L ζn)
]

1+ ð(ζn, ε)

,
ð(ζn,L ζn) ð(ε,L ε)

1+ ð(ζn, ε)
,

ð(ζn,L ζn),ð(ε,L ε), ð(ζn, ε)
}

D(ζn, ε) = max

{

ð(ε,L ε)
[

1+ ð(ζn,L ζn)
]

1+ ð(ζn, ε)
, ð(ζn, ε)

}

.

(7)lim
n→+∞

C(ζn, ε) = max{ð(ε,L ε), 0} = ð(ε,L ε),

(8)lim
n→+∞

D(ζn, ε) = max{ð(ε,L ε), 0} = ð(ε,L ε).

(9)

φ̂(ð(ζn+1,L ε)) =φ̂(ð(L ζn,L ε))

≤ φ̂(s ð(L ζn,L ε)

≤ φ̂(C(ζn, ε))

− ψ̂(D(ζn, ε)).

φ̂(ð(ε,L ε)) ≤ φ̂(ð(ε,L ε))− ψ̂(ð(ε,L ε)) < φ̂(ð(ε,L ε)),

Theorem 2.3  If every two elements of P are comparable 
then L has a unique fixed point in Theorems 2.1 and 2.2.

Proof  Let ζ ∗ �= ̟ ∗ be two fixed points of L in P , then 
from (1), we have

As a result, we get

where

Therefore from (10), we have

which leads contradiction to ζ ∗ �= ̟ ∗ . Thus, ζ ∗ = ̟ ∗ . �

We have the following consequences from Theo-
rems 2.1, 2.2 and 2.3.

Corollary 2.4  Instead D(ζ ,̟) by C(ζ ,̟) in condi-
tion (1), we have the same conclusions as from Theo-
rems 2.1, 2.2 and 2.3.

Corollary 2.5  Taking φ̂(m) = m and ψ̂(m) = (1− k)m 
in Corollary 2.4, then the contraction condition becomes

Then one can arrive at the same conclusions as in Theo-
rems 2.1, 2.2 and 2.3.

φ̂(ð(L ζ ∗,L̟ ∗)) ≤ φ̂(s ð(L ζ ∗,L̟ ∗))

≤ φ̂(C(ζ ∗,̟ ∗))− ψ̂(D(ζ ∗,̟ ∗)).

(10)ð(ζ ∗,̟ ∗) = ð(L ζ ∗,L̟ ∗) ≤
1

s
C(ζ ∗,̟ ∗),

C(ζ ∗,̟ ∗) = max

{

ð(̟ ∗,L̟ ∗)
[

1+ ð(ζ ∗,L ζ ∗)
]

1+ ð(ζ ∗,̟ ∗)
,

ð(ζ ∗,L ζ ∗) ð(̟ ∗,L̟ ∗)

1+ ð(ζ ∗,̟ ∗)
, ð(ζ ∗,L ζ ∗),

ð(̟ ∗
,L̟ ∗),ð(ζ ∗,̟ ∗)

}

= max

{

ð(̟ ∗,̟ ∗)[1+ ð(ζ ∗, ζ ∗)]

1+ ð(ζ ∗,̟ ∗)
,

ð(ζ ∗, ζ ∗) ð(̟ ∗,̟ ∗)

1+ ð(ζ ∗,̟ ∗)
, ð(ζ ∗, ζ ∗)

, ð(̟ ∗
,̟ ∗),ð(ζ ∗,̟ ∗)

}

= max{0, ð(ζ ∗,̟ ∗)}

= ð(ζ ∗,̟ ∗).

ð(ζ ∗,̟ ∗) ≤
1

s
ð(ζ ∗,̟ ∗) < ð(ζ ∗,̟ ∗),

ð(L ζ ,L̟) ≤
k

s
max

{

ð(̟ ,L̟)
[

1+ ð(ζ ,L ζ )
]

1+ ð(ζ ,̟)
,

ð(ζ ,L ζ ) ð(̟ ,L̟)

1+ ð(ζ ,̟)
,ð(ζ ,L ζ ),ð(̟ ,L̟),ð(ζ ,̟)

}

.
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A self mapping L on P with respect to f : P → P 
is a generalized contraction mapping, if it satisfies the 
following condition for all ζ ,̟ ∈ P with f ζ � f ̟ , 
φ̂ ∈ �̂ and ψ̂ ∈ �̂:

where

and

Now, we have the following result.

Theorem  2.6  The two continuous self-mappings L , f  
on P have a coincidence point, if they satisfy the following 
conditions: 

a.	 L is a monotone f -non-decreasing,
b.	 LP ⊆ f P and a pair (L , f ) are compatible,
c.	 f ζ0 � L ζ0 for some ζ0 ∈ P and
d.	 satisfies the condition (11) in a complete partially 

ordered b-metric space (P, ð,�).

Proof  From Theorem 2.2 of [5], we have the sequences 
{ζn}, {̟n} ⊆ P with

for which

Now from [5], we have to show that

for all n ≥ 1 and where � ∈ [0, 1
s
).

From Eqs. (11), (14) and (15), we have

(11)
φ̂(s ð(L ζ ,L̟)) ≤ φ̂(Cf (ζ ,̟))− ψ̂(Df (ζ ,̟)),

(12)

Cf (ζ ,̟) =max

{

ð(f ̟ ,L̟)
[

1+ ð(f ζ ,L ζ )
]

1+ ð(f ζ , f ̟)
,

ð(f ζ ,L ζ ) ð(f ̟ ,L̟)

1+ ð(f ζ , f ̟)
,ð(f ζ ,L ζ ),

ð(f ̟ ,L̟),ð(f ζ , f ̟)
}

,

(13)

Df (ζ ,̟)

= max{
ð(f ̟ ,L̟)

[

1+ ð(f ζ ,L ζ )
]

1+ ð(f ζ , f ̟)
, ð(f ζ , f ̟)}.

(14)̟n = L ζn = f ζn+1 for all n ≥ 0,

(15)f ζ0 � f ζ1 � · · · � f ζn � f ζn+1 � · · · .

(16)ð(̟n,̟n+1) ≤ �ð(̟n−1,̟n),

where

and

From Eq. (17), we have

If 0 < ð(̟n−1,̟n) ≤ ð(̟n,̟n+1) for some n, then Eq. 
(18) follows that

or equivalently

a contradiction. Therefore, from Eq. (18) we have

Hence, � ∈ [0, 1
s
) from (16). According to Lemma 3.1 of 

[15] and from Eq. (16), we have

(17)

φ̂(s ð(̟n,̟n+1)) = φ̂(s ð(L ζn,L ζn+1))

≤ φ̂(Cf (ζn, ζn+1))

− ψ̂(Df (ζn, ζn+1)),

Cf (ζn, ζn+1) = max

{

ð(f ζn+1,L ζn+1)
[

1+ ð(f ζn,L ζn)
]

1+ ð(f ζn, f ζn+1)
,

ð(f ζn,L ζn) ð(f ζn+1,L ζn+1)

1+ ð(f ζn, f ζn+1)
,

ð(f ζn,L ζn),ð(f ζn+1,L ζn+1),ð(f ζn, f ζn+1)
}

= max

{

ð(̟n,̟n+1)[1+ ð(̟n−1,̟n)]

1+ ð(̟n−1,̟n)
,

ð(̟n−1,̟n) ð(̟n,̟n+1)

1+ ð(̟n−1,̟n)
,

ð(̟n−1,̟n),ð(̟n,̟n+1),ð(̟n−1,̟n)}

≤ max{ð(̟n−1,̟n),ð(̟n,̟n+1)}

Df (ζn, ζn+1) = max

{

ð(f ζn+1,L ζn+1)
[

1+ ð(f ζn,L ζn)
]

1+ ð(f ζn, f ζn+1)
,

ð(f ζn, f ζn+1)
}

= max

{

ð(̟n,̟n+1)[1+ ð(̟n−1,̟n)]

1+ ð(̟n−1,̟n)
,

ð(̟n−1,̟n)}

= max{ð(̟n−1,̟n),ð(̟n,̟n+1)}.

(18)

φ̂(s ð(̟n,̟n+1)) ≤ φ̂(max{ð(̟n−1,̟n),ð(̟n,̟n+1)})

− ψ̂(max{ð(̟n−1,̟n),ð(̟n,̟n+1)}).

φ̂(s ð(̟n,̟n+1)) ≤ φ̂(ð(̟n,̟n+1))

− ψ̂(ð(̟n,̟n+1)) < φ̂(ð(̟n,̟n+1)),

s ð(̟n,̟n+1) ≤ ð(̟n,̟n+1),

(19)s ð(̟n,̟n+1) ≤ ð(̟n−1,̟n).
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From condition (b), we have

and the continuity of L and f  we have,

Furthermore,

Thus, ð(L v, f v) = 0 as n → +∞ in (22) and hence the 
result.

� �

We have the following result without the continuity 
property of f  and L in Theorem 2.6.

Theorem 2.7  If P has the property in Theorem 2.6 that

then the weakly compatible mappings L , f  have a coin-
cidence point. Besides that, when L and f  commute at 
their coincidence points, then L , f  have a common fixed 
point in P.

Proof  As from Theorem 2.6, {̟n} = {L ζn} = {f ζn+1} 
is a Cauchy sequence. Since f P is closed then

Thus, f ζn � f µ for all n. Next to show that L , f  have 
a coincidence point µ . From (11), we have

where

lim
n→+∞

L ζn = lim
n→+∞

f ζn+1 = µ, for µ ∈ P.

(20)lim
n→+∞

ð(f (L ζn),L (f ζn)) = 0,

(21)
lim

n→+∞
f (L ζn) = f µ, lim

n→+∞
L (f ζn) = Lµ.

(22)

1

s
ð(Lµ, f µ) ≤ ð(Lµ,L (f ζn))+ s ð(L (f ζn),

f (L ζn))+ s ð(f (L ζn), f µ).

a sequence {f ζn} ⊂ P is a non-decreasing such that

lim
n→+∞

f ζn = f ζ ∈ f P, and

f P ⊆ P is closed and f ζn � f ζ , f ζ � f (f ζ ) for

n and f ζ0 � L ζ0 for some ζ0 ∈ P,

lim
n→+∞

L ζn = lim
n→+∞

f ζn+1 = f µ for µ ∈ P.

(23)
φ̂(s ð(L ζn,L ζ )) ≤ φ̂(Cf (ζn, ζ ))− ψ̂(Df (ζn, ζ )),

and

Thus Eq. (23) becomes

As a result, we have

Furthermore, the triangular inequality of ð , we have

thus Eqs. (25) and (26) lead to contradiction, if 
f µ  = Lµ . Hence, f µ = Lµ . Let f µ = Lµ = ρ , 
then Lρ = L (f µ) = f (Lµ) = f ρ . Since 
f µ = f (f µ) = f ρ , then by Eq. (23) with 
f µ = Lµ and f ρ = Lρ , we get

or equivalently,

which is a contradiction, if Lµ  = Lρ . Thus, 
Lµ = Lρ = ρ and implies that Lµ = f ρ = ρ . Hence 
the result.�  �

Cf (ζn,µ) = max

{

ð(f µ,Lµ)
[

1+ ð(f ζn,L ζn)
]

1+ ð(f ζn, f µ)
,

ð(f ζn,L ζn) ð(f µ,Lµ)

1+ ð(f ζn, f µ)
, ð(f ζn,L ζn),

ð(f µ,Lµ),ð(f ζn, f µ)
}

→ max{ð(f µ,Lµ), 0, 0,ð(f µ,Lµ), 0}

= ð(f µ,Lµ) as n → +∞,

Df (ζn,µ) = max{
ð(f µ,Lµ)

[

1+ ð(f ζn,L ζn)
]

1+ ð(f ζn, f µ)
,

ð(f ζn, f µ)}

→ max{ð(f µ,Lµ), 0}

= ð(f µ,Lµ) as n → +∞.

(24)
φ̂(s lim

n→+∞
ð(L ζn,L ζ )) ≤ φ̂(ð(f µ,Lµ))

− ψ̂(ð(f µ,Lµ)) < φ̂(ð(f µ,Lµ)).

(25)lim
n→+∞

ð(L ζn,L ζ ) <
1

s
ð(f µ,Lµ).

(26)

1

s
ð(f µ,Lµ) ≤ ð(f µ,L ζn)+ ð(L ζn,Lµ),

(27)
φ̂(s ð(Lµ,Lρ)) ≤ φ̂(Cf (µ, ρ))

− ψ̂(Df (µ, ρ)) < φ̂(ð(Lµ,Lρ)),

s ð(Lµ,Lρ) ≤ ð(Lµ,Lρ),
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Definition 2.8  Consider the partially ordered b-metric 
space (P, ð,�) . A mapping L : P×P → P is a gener-
alized (φ̂, ψ̂)-contractive mapping with respect to a self 
mapping f  on P , if

for all ζ ,̟ , ̺, σ ∈ P with f ζ � f  ̺ and f ̟ � f σ , 
k > 2 , s > 1 , φ̂ ∈ �̂ , ψ̂ ∈ �̂ and where

and

Theorem  2.9  Let (P, ð,�) be a complete par-
tially ordered b-metric space. Assume that a mapping 
L : P×P → P satisfies the condition (28) and, L , f  
are continuous, L has mixed f -monotone property and 
commutes with f . Suppose, if for some (ζ0,̟0) ∈ P×P 
such that f ζ0 � L (ζ0,̟0), f ̟0 � L (̟0, ζ0) and 
L (P×P) ⊆ f (P), then L and f  have a coupled coin-
cidence point in P.

Proof  From Theorem  2.2 of [5], there will be two 
sequences {ζn}, {̟n} ⊂ P such that

In particular, the sequences {f ζn} and {f ̟n} 
are non-decreasing and non-increasing in P . Put 
ζ = ζn,̟ = ̟n, ̺ = ζn+1, σ = ̟n+1 in (28), we get

where

(28)

φ(s k
ð(L (ζ ,̟),L (̺, σ)))

≤ φ̂(Cf (ζ ,̟ , ̺, σ))

− ψ̂(Df (ζ ,̟ , ̺, σ)),

Cf (ζ ,̟ , ̺, σ) = max

{

ð(f ̺,L (̺, σ))
[

1+ ð(f ζ ,L (ζ ,̟))
]

1+ ð(f ζ , f ̺)
,

ð(f ζ ,L (ζ ,̟)) ð(f ̺,L (̺, σ))

1+ ð(f ζ , f ̺)
,

ð(f ζ ,L (ζ ,̟)),ð(f ̺,L (̺, σ)),

ð(f ζ , f ̺)
}

,

Df (ζ ,̟ , ̺, σ) =max

{
ð(f ̺,L (̺, σ))

[

1+ ð(f ζ ,L (ζ ,̟))
]

1+ ð(f ζ , f ̺)
,

ð(f ζ , f ̺)}.

f ζn+1 = L (ζn,̟n), f ̟n+1 = L (̟n, ζn), for all n ≥ 0.

(29)

φ̂(s k
ð(f ζn+1, f ζn+2))

= φ̂(s k
ð(L (ζn,̟n),L (ζn+1,̟n+1)))

≤ φ̂(Cf (ζn,̟n, ζn+1,̟n+1))

− ψ̂(Df (ζn,̟n, ζn+1,̟n+1)),

and

Therefore from (29), we have

Similarly by taking ζ = ̟n+1,̟ = ζn+1, ̺ = ζn, σ = ζn 
in (28), we get

We know that max{φ̂(ε1), φ̂(ε2)} = φ̂{max{ε1, ε2}} for 
ε1, ε2 ∈ [0,+∞) . Then by adding Eqs. (32) and (33) 
together to get,

where

Let us denote,

Hence from Eqs. (32)–(35), we obtain that

(30)
Cf (ζn,̟n, ζn+1,̟n+1)

≤ max{ð(f ζn, f ζn+1),

ð(f ζn+1, f ζn+2)}

(31)
Df (ζn,̟n, ζn+1,̟n+1)

= max{ð(f ζn, f ζn+1),ð(f ζn+1, f ζn+2)}.

(32)

φ̂(s k
ð(f ζn+1, f ζn+2)) ≤ φ̂(max{ð(f ζn, f ζn+1),

ð(f ζn+1, f ζn+2)})

− ψ̂(max{ð(f ζn, f ζn+1),

ð(f ζn+1, f ζn+2)}).

(33)

φ̂(s k
ð(f ̟n+1, f ̟n+2))

≤ φ̂(max{ð(f ̟n, f ̟n+1),

ð(f ̟n+1, f ̟n+2)})

− ψ̂(max{ð(f ̟n, f ̟n+1),

ð(f ̟n+1, f ̟n+2)}).

(34)

φ̂(s kδn) ≤ φ(max{ð(f ζn, f ζn+1),

ð(f ζn+1, f ζn+2),ð(f ̟n, f ̟n+1),

ð(f ̟n+1, f ̟n+2)})

− ψ̂(max{ð(f ζn, f ζn+1),

ð(f ζn+1, f ζn+2),ð(f ̟n, f ̟n+1),

ð(f ̟n+1, f ̟n+2)})

(35)
δn = max{ð(f ζn+1, f ζn+2),ð(f ̟n+1, f ̟n+2)}.

(36)
∇n =max{ð(f ζn, f ζn+1),ð(f ζn+1, f ζn+2),

ð(f ̟n, f ̟n+1), ð(f ̟n+1, f ̟n+2)}.
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Now to claim that

for n ≥ 1 and � = 1
s k ∈ [0, 1).

Suppose that if ∇n = δn then from (37), we get s kδn ≤ δn 
this leads to δn = 0 since s > 1 and thus (38) holds. 
Suppose ∇n = max{ð(f ζn, f ζn+1),ð(f ̟n, f ̟n+1)} , 
that is, ∇n = δn−1 thence (37) follows (38).

Now, we can deduce from (37) that δn ≤ �
nδ0 and 

therefore,

which shows that {f ζn} and {f ̟n} in P are Cauchy 
sequences from Lemma 3.1 of [15]. Therefore, we can 
conclude from [3] of Theorem 2.2 that L and f  in P have 
a coincidence point. � �

Corollary 2.10  Suppose (P, ð,�) be a complete par-
tially ordered b-metric space. Let a continuous map-
ping L : P×P → P has a mixed monotone property 
and satisfies the contraction conditions below for any 
ζ ,̟ , ̺, σ ∈ P such that ζ �  ̺and ̟ � σ , k > 2, s > 1, 
φ̂ ∈ �̂ and ψ̂ ∈ �̂ : 

	 i.	

	 ii.	

where

(37)s
kδn ≤ ∇n.

(38)δn ≤ �δn−1,

(39)
ð(f ζn+1, f ζn+2) ≤ �

nδ0 and ð(f ̟n+1, f ̟n+2) ≤ �
nδ0,

φ̂(s k
ð(L (ζ ,̟),L (̺, σ)))

≤ φ̂(Cf (ζ ,̟ , ̺, σ))− ψ̂(Df (ζ ,̟ , ̺, σ)),

ð(L (ζ ,̟),L (̺, σ)) ≤
1

s k
Cf (ζ ,̟ , ̺, σ)

−
1

s k
ψ̂(Df (ζ ,̟ , ̺, σ)).

Cf (ζ ,̟ , ̺, σ) =max
{

ð(̺,L (̺, σ))
[

1+ ð(ζ ,L (ζ ,̟))
]

1+ ð(ζ , ̺)
,

ð(ζ ,L (ζ ,̟)) ð(̺,L (̺, σ))

1+ ð(ζ , ̺)
,

ð(ζ ,L (ζ ,̟)),ð(̺,L (̺, σ)),ð(ζ , ̺)
}

,

and

 If there exists (ζ0,̟0) ∈ P×P such that ζ0 � L (ζ0,̟0) 
and ̟ 0 � L (̟0, ζ0), then L has a coupled fixed point in 
P.

Theorem  2.11  A unique coupled common fixed 
point for L and f  exists in Theorem  2.9, if for every 
(ζ ,̟), (k , l ) ∈ P×P there is some (α∗,β∗) ∈ P×P 
such that (L (α∗,β∗),L (β∗,α∗)) is comparable to 
(L (ζ ,̟),L (̟ , ζ )) and to (L (k , l ),L (l , k )).

Proof  From Theorem  2.9, the mappings L and 
f  have a coupled coincidence point in P . Let 
(ζ ,̟), (k , l ) ∈ P×P are two coupled coincidence 
points of L and f  . Now to claim that f ζ = f k and 
f ̟ = f l . By hypotheses (L (α∗,β∗),L (β∗,α∗)) 
is comparable to (L (ζ ,̟),L (̟ , ζ )) for some 
(α∗,β∗) ∈ P×P.

Now, assume the following

Suppose α∗
0 = α∗ and β∗

0 = β∗ then there is a point 
(α∗

1,β
∗
1) ∈ P×P such that

We have the sequences {f α∗
n} and {f β∗

n} in P as by 
the repeated application of the above argument with

Similarly, define the sequences {f ζn} , {f ̟n} and 
{f kn} , {f ln} in P by setting ζ0 = ζ , ̟0 = ̟ and 
k0 = k , l0 = l . Furthermore, we have

Therefore by induction, we have

Now from Eq. (28), we get

Df (ζ ,̟ , ̺, σ) =max

{
ð(̺,L (̺, σ))

[

1+ ð(ζ ,L (ζ ,̟))
]

1+ ð(ζ , ̺)
,

ð(ζ , ̺)}.

(L (ζ ,̟),L (̟ , ζ )) ≤ (L (α∗,β∗),L (β∗,α∗)) and

(L (k , l ),L (l , k )) ≤ (L (α∗,β∗),L (β∗,α∗)).

f α∗
1 = L (α∗

0,β
∗
0), f β∗

1 = L (β∗
0,α

∗
0) (n ≥ 1).

f α∗
n+1 = L (α∗

n,β
∗
n), f β∗

n+1 = L (β∗
n,α

∗
n), n ≥ 0.

(40)

f ζn → L (ζ ,̟), f ̟n → L (̟ , ζ ), f kn

→ L (k , l ), f ln → L (l , k ) (n ≥ 1).

(41)(f ζn, f ̟n) ≤ (f α∗
n, f β∗

n), n ≥ 0.
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where

and

As a result of Eq. (42), we now have

As a consequence of a similar argument, we deduce that

Therefore from (43) and (44), we have

The property of φ̂ implies that,

Hence, max{ð(f ζ , f α∗
n), ð(f ̟ , f β∗

n)} is bounded 
below decreasing sequence of positive reals and by a 
result, we get

(42)

φ̂(ð(f ζ , f α∗
n+1)) ≤ φ̂(s k

ð(f ζ , f α∗
n+1))

= φ̂(s k
ð(L (ζ ,̟),L (α∗

n,β
∗
n)))

≤ φ̂(Cf (ζ ,̟ ,α∗
n,β

∗
n))

− ψ̂(Df (ζ ,̟ ,α∗
n,β

∗
n)),

Cf (ζ ,̟ ,α∗
n,β

∗
n)

= max

{

ð(f α∗
n,L (α∗

n,β
∗
n))

[

1+ ð(f ζ ,L (ζ ,̟))
]

1+ ð(f ζ , f α∗
n)

,

ð(f ζ ,L (ζ ,̟)) ð(f α∗
n,L (α∗

n,β
∗
n))

1+ ð(f ζ , f α∗
n)

,

ð(f ζ ,L (ζ ,̟)),ð(f α∗
n,L (α∗

n,β
∗
n)),

ð(f ζ , f α∗
n)
}

= max{0,ð(f ζ , f α∗
n)}

= ð(f ζ , f α∗
n)

Df (ζ ,̟ ,α∗
n,β

∗
n) = max

{

ð(f α∗
n,L (α∗

n,β
∗
n))

[

1+ ð(f ζ ,L (ζ ,̟))
]

1+ ð(f ζ , f α∗
n)

, ð(f ζ , f α∗
n)

}

= ð(f ζ , f α∗
n).

(43)
φ̂(ð(f ζ , f α∗

n+1)) ≤ φ̂(ð(f ζ , f α∗
n))

− ψ̂(ð(f ζ , f α∗
n)).

(44)
φ̂(ð(f ̟ , f β∗

n+1)) ≤ φ̂(ð(f ̟ , f β∗
n))

− ψ̂(ð(f ̟ , f β∗
n)).

(45)

φ̂(max{ð(f ζ , f α∗
n+1),ð(f ̟ , f β∗

n+1)})

≤ φ̂(max{ð(f ζ , f α∗
n),ð(f ̟ , f β∗

n)})

− ψ̂(max{ð(f ζ , f α∗
n),ð(f ̟ , f β∗

n)})

< φ̂(max{ð(f ζ , f α∗
n),ð(f ̟ , f β∗

n)}).

max{ð(f ζ , f α∗
n+1),ð(f ̟ , f β∗

n+1)}

< max{ð(f ζ , f α∗
n),ð(f ̟ , f β∗

n)}.

Therefore as n → +∞ in Eq. (45), we get

which we have derived ψ̂(Ŵ) = 0 . Hence, Ŵ = 0 . 
Therefore,

Thus,

Also from the above same argument, we procured that

Therefore from (47) and (48), we get f ζ = f k 
and f ̟ = f l . Since f ζ = L (ζ ,̟) and 
f ̟ = L (̟ , ζ ) and the commutativity property of L 

and f  implies that

If f ζ = α∗ and f ̟ = β∗ then from (49), we get

this shows that (α∗,β∗) is a coupled coincidence point 
of L and f  . Hence, f (α∗) = f k and f (β∗) = f l 
which in turn gives that f (α∗) = α∗ and f (β∗) = β∗ . 
Therefore, we conclude from (50) that (α∗,β∗) is a cou-
pled common fixed point of L and f .

Assume (α∗,β∗) is another coupled common fixed 
point to L and f  . Thus α∗ = f α∗ = L (α∗,β∗) and 
β∗ = f β∗ = L (β∗,α∗) . But (α∗,β∗) is a coupled com-
mon fixed point of L and f  then f α∗ = f ζ = α∗ and 
f β∗ = f ̟ = β∗ . Therefore, α∗ = f α∗ = f α∗ = α∗ 
and β∗ = f β∗ = f β∗ = β∗ . Hence the uniqueness.�  �

Theorem  2.12  If f ζ0 � f ̟0 or f ζ0 � f ̟0 in 
Theorem 2.11, then L and f  have a unique common fixed 
point in P.

lim
n→+∞

max{ð(f ζ , f α∗
n), ð(f ̟ , f β∗

n)} = Ŵ, Ŵ ≥ 0.

(46)φ̂(Ŵ) ≤ φ̂(Ŵ)− ψ̂(Ŵ),

lim
n→+∞

max{ð(f ζ , f α∗
n), ð(f ̟ , f β∗

n)} = 0.

(47)
lim

n→+∞
ð(f ζ , f α∗

n) = 0 and lim
n→+∞

ð(f ̟ , f β∗
n) = 0.

(48)
lim

n→+∞
ð(f k , f α∗

n) = 0 and lim
n→+∞

ð(f l , f β∗
n) = 0.

(49)

f (f ζ ) = f (L (ζ ,̟)) = L (f ζ , f ̟) and f (f ̟)

= f (L (̟ , ζ )) = L (f ̟ , f ζ ).

(50)
f (α∗) = L (α∗,β∗) and f (β∗) = L (β∗,α∗),
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Proof  Assume that (ζ ,̟) ∈ P is a unique coupled com-
mon fixed point of L and f  . Next to show that ζ = ̟ . 
Suppose that f ζ0 � f ̟0 then by induction, we get 
f ζn � f ̟n for all n ≥ 0 . From Lemma 2 of [16], we 
have

which is a contradiction. Hence, ζ = ̟.

The result can also be seen in the case of f ζ0 � f ̟0 . �

Note 1  The same conclusions can also be seen as in 
Theorems   2.6, 2.7,  2.9,   2.11 and   2.12 by maintaining 
only Cf (ζ ,̟) , Cf (ζ ,̟ , ̺, σ) in place of Df (ζ ,̟) , 
Df (ζ ,̟ , ̺, σ) in the contraction conditions.

Remark 2.13  Although s = 1 and as a consequence of 
[14], the condition

is equivalent to,

where φ̂ ∈ �̂ , ψ̂ ∈ �̂ and ϕ is a continuous self mapping 
on [0,+∞) with ϕ(ε) < ε for all ε > 0 and ϕ(ε) = 0 if and 
only if ε = 0 . As a result, the findings are generalized and 
expanded the results of [9, 12, 17] as well as several other 
comparable results.

Now depending on the continuity of a metric ð , we 
have the following examples.

φ̂
(

s
k−2

ð(ζ ,̟)
)

= φ̂(s k 1

s 2
ð(ζ ,̟))

≤ lim
n→+∞

sup φ̂(s k
ð(ζn+1,̟n+1))

= lim
n→+∞

sup φ̂(s k
ð(L (ζn,̟n),L (̟n, ζn)))

≤ lim
n→+∞

sup φ̂(Cf (ζn,̟n,̟n, ζn))

− lim
n→+∞

inf ψ̂(Df (ζn,̟n,̟n, ζn))

≤ φ̂(ð(ζ ,̟))

− lim
n→+∞

inf ψ̂(Df (ζn,̟n,̟n, ζn))

< φ̂(ð(ζ ,̟)),

φ̂(ð(L (ζ ,̟),L (̺,̟)))

≤ φ̂(max{ð(f ζ , f ̺), ð(f ̟ , f ̟)})

− ψ̂(max{ð(f ζ , f ̺), ð(f ̟ , f ̟)})

ð(L (ζ ,̟),L (̺,̟))

≤ ϕ(max{ð(f ζ , f ̺), ð(f ̟ , f ̟)}),

Example 2.14  Let P = {a, b, c, d, e, f } and ð : P×P → P 
be a metric defined by

A self mapping L on P defined by 
La = Lb = L c = Ld = L e = 1,L f = 2 has a fixed 
point with φ̂(ε) = ε

2 and ψ̂(ε) = ε
4 where ε ∈ [0,+∞).

Proof  For s = 2 , (P, ð,≤) is a complete par-
tially ordered b-metric space. Assume that ζ < ̟ for 
ζ ,̟ ∈ P , then we have the following cases:

Case 1  If ζ ,̟ ∈ {a, b, c, d, e} then ð(L ζ ,L̟) = ð(a, a) = 0 . 
Thus,

Case 2  If ζ ∈ {a, b, c, d, e} and ̟ = f  , then 
ð(L ζ ,L̟) = ð(a, b) = 3 , C(f , e) = D(f , e) = 20 and 
C(ζ , f ) = D(ζ , f ) = 12 , for ζ ∈ {a, b, c, d} . Hence,

As a result, all the conditions of Theorem 2.1 are satisfied, 
and hence L has a fixed point in P .�  �

Example 2.15  Define a metric ð with usual order ≤ by

where P = {0, 1, 12 ,
1
3 ,

1
4 , · · ·

1
n , · · · } . Then a self mapping 

L on P by L0 = 0,L 1
n = 1

12n (n ≥ 1) has a fixed point 
with φ̂(ε) = ε and ψ̂(ε) = 4ε

5  for ε ∈ [0,+∞).

Proof  ð is evidently discontinuous, and (P, ð,≤) is a 
complete partially ordered b-metric space with s = 12

5  . 
Now we have the following cases for ζ ,̟ ∈ P with 
ζ < ̟:

ð(ζ ,̟) = ð(̟ , ζ ) = 0, if ζ = ̟

= a, b, c, d, e, f and ζ = ̟ ,

ð(ζ ,̟) = ð(̟ , ζ ) = 3, if ζ = ̟

= a, b, c, d, e and ζ �= ̟ ,

ð(ζ ,̟) = ð(̟ , ζ ) = 12, if ζ

= a, b, c, d and ̟ = f ,

ð(ζ ,̟) = ð(̟ , ζ ) = 20, if ζ = e and ̟

= f , with usual order ≤ .

φ̂(2ð(L ζ ,L̟)) = 0 ≤ φ̂(C(ζ ,̟))− ψ̂(D(ζ ,̟)).

φ̂(2ð(L ζ ,L̟)) ≤
C(ζ ,̟)

d
= φ̂(C(ζ ,̟))− ψ̂(D(ζ ,̟)).

ð(ζ ,̟) =















0, if ζ = ̟

1, if ζ �= ̟ ∈ {0, 1}

|ζ −̟ |, if ζ ,̟ ∈
�

0, 1
2n ,

1
2m : n �= m ≥ 1

�

6, otherwise.
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Case 1  Suppose ζ = 0 and ̟ = 1
n (n > 0) , then 

ð(L ζ ,L̟) = ð(0, 1
12n ) =

1
12n

 and C(ζ ,̟) orD(ζ ,̟) = 1
n 

and C(ζ ,̟) orD(ζ ,̟) = {1, 6} . Therefore,

Case 2  Suppose that ζ = 1
m and ̟ = 1

n where 
m > n ≥ 1 , then

Thus,

Hence, we have the conclusion from Theorem 2.1 as all 
assumptions are fulfilled. � �

Example 2.16  Let d : P×P → P be a metric with 
P = {℧/℧ : [a1, a2] → [a1, a2] continuous} and

for every ℧1,℧2 ∈ P , 0 ≤ a1 < a2 with ℧1 � ℧2 implies 
a1 ≤ ℧1(ε) ≤ ℧2(ε) ≤ a2, ε ∈ [a1, a2] . A self mapping 
L on P defined by L℧ = ℧

5 ,℧ ∈ P has a unique fixed 
point with φ̂(ä) = ä and ψ̂(ä) = ä

3 , for any ä ∈ [0,+∞].

Proof  Since, min(℧1,℧2)(ε) = min{℧1(ε),℧2(ε)} is 
continuous, and all other assumptions of Theorem 2.3 are 
satisfied for s = 2 . As a result, 0 ∈ P is the only fixed 
point of L.

� �

Limitations
In complete partially ordered b-metric space, the exist-
ence and uniqueness of a fixed point for a self mapping 
which satisfies a generalized weak contraction condi-
tion with two rational auxiliary functions are discussed. 
These results are further generalized for two self map-
pings in the same context and proved the existence 
of coincidence point, coupled coincidence point and 

φ̂

(

12

5
ð(L ζ ,L̟)

)

≤
C(ζ ,̟)

5

= φ̂(C(ζ ,̟))− ψ̂(D(ζ ,̟)).

ð(L ζ ,L̟)

= ð(
1

12m
,

1

12n
), C(ζ ,̟)

= D(ζ ,̟) ≥
1

n
−

1

m
or C(ζ ,̟)

= D(ζ ,̟) = 6.

φ̂

(

12

5
ð(L ζ ,L̟)

)

≤
C(ζ ,̟)

5

= φ̂(C(ζ ,̟))− ψ̂(D(ζ ,̟)).

ð(℧1,℧2) = sup
ε∈[a1,a2]

{|℧1(ε)− ℧2(ε)|
2}

coupled common fixed points. Also, shown that these 
results are generalized the well known existing results 
in the literature. Some numerical examples are given to 
justify the obtained results.

•	 These results can be extended by involving more 
mappings in partially ordered b-metric space to 
acquire triple, quadruple fixed points.

•	 These contractions can be used to obtain a coinci-
dence point, coupled coincidence point and cou-
pled common fixed points for the mappings in 
various ordered metric spaces with required topo-
logical properties like monotone non-decreasing, 
mixed monotone, compatible etc.
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