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Abstract 

Objectives:  The nuclear matrix maintains and regulates chromatin structure. RNA is an integral component of the 
nuclear matrix and is essential to its structural maintenance. Bombyx mori is a major economic contributor in the 
sericulture industry and produces fibroin—the most important silk protein in its posterior silk glands during 5th instar 
larval stage. The present study investigates the composition of nuclear matrix RNA prepared from the posterior silk 
glands of Bombyx mori during fifth instar larval stage where maximum silk production occurs. The datasets from which 
the analysis is carried out are part of data note titled “Nuclear matrix associated RNA datasets of posterior silk glands of 
Bombyx mori during 5th instar larval development”.

Results:  The results showed significant enrichment of nuclear matrix RNA from day 1, to day 5 and day 7. Nuclear 
RNA showed increased abundance from day 1 to day 5 and day 7. Nuclear matrix RNA exhibited repetitive RNA 
sequences, of which UGUCC and GCU​GGU​ were the most abundant. Genes involved in metabolic pathways showed 
significant enrichment correlating with silk production. These results emphasize the role of dynamic, repetitive DNA 
transcripts in chromatin architecture and further reveal the close association between the nuclear matrix and gene 
expression.
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Introduction
The nuclear matrix (NuMat) is the non-chromatin resid-
ual nuclear structure, which remains following nuclease 
treatment and salt extraction of isolated nuclei. Although, 
it consists of DNA, RNA, and protein, the RNA compo-
nent is considered its major constituent [1]. In Drosoph-
ila melanogaster embryos, the NuMat extract retained 
30% of RNA compared to DNA (1–2%) and protein (10%) 
[2]. In this study, we investigated nuclear retention of 
RNA obtained from NuMat preparations of posterior silk 
glands (PSGs) from 5th instar Bombyx mori larvae, on 
days 1, 5, and 7 of development.

Nuclear matrix associated RNA (NuMat RNA) con-
tributes to gene regulation and genome stability [3]. The 
non-coding RNA associated or transcribed from repeat 
sequences were found to play an essential role in hetero-
chromatin formation [4]. Many transcription sites are 
associated with distal or inter-chromosomal chromatin-
associated RNAs [5]. These findings highlight the impor-
tance of NuMat RNA in regulating gene expression. 
Many repeat sequences have been associated with the 
nuclear matrix [6, 7] and have shown to contribute to the 
stability and viability of the nuclear matrix [6].

Simple sequence repeats (SSR) of long non-coding 
RNA (lncRNA) recruit pyrimidine tract binding pro-
tein-specific motifs in the perinucleolar compartment, 
thereby regulating pre mRNA splicing and cell survival 
[8]. lncRNAs in particular, play an important role in 
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aiding or hindering interactions of macromolecules by 
acting as scaffolds or decoys. They regulate nuclear pro-
cesses such as chromosome topology, chromatin state 
and gene transcription [9].

The silkworm, B. mori is an economically signifi-
cant insect that largely contributes to silk production. 
The PSGs are the sites of synthesis for fibroin, the most 
important protein involved in silk production. Here, we 
determined the composition and abundance of genome-
wide NuMat RNAs in the PSGs of 5th instar Bombyx 
mori larvae, on days 1, 5, and 7. In this study, we identi-
fied microsatellite repeats/simple sequence repeats in all 
3 days. In addition, we identified genes associated with 
nuclear matrix RNAs and their related biological path-
ways. Finally, we determined the functional role of each 
of the genes.

Materials and methods
Isolation and quantification of nuclear matrix RNA
Fresh mulberry leaves (V1 variety) were used to feed 100 
B. mori larvae of CSR2X CSR4 variety throughout the 5th 
instar stage. PSGs were dissected from 5th instar larvae 
on day 1, day 5, and day 7 under sterile conditions using 
1X PBS. PSGs were pooled [day1 (n = 30), day 5 (n = 15) 
and day 7 (n = 10)] from a single rearing and were 
homogenized in nuclear isolation buffer (5 times volume 
of the weight of the tissue) and processed for nuclei and 
nuclear matrix isolation by following the standard pro-
tocol for isolation through nuclease digestion and salt 
extraction [2].

The nuclear and nuclear matrix pellets were then used 
for RNA isolation with TRIzol reagent [10]. Quantifica-
tion of nuclear and nuclear matrix PSG RNA on day 1, 
day 5, and day 7 was carried out by UV spectrophotom-
etry. Student’s t-test: two-sample assuming unequal vari-
ances, was used to determine significance of variation. 
Agarose gel electrophoresis was performed to determine 
the NuMat RNA.

Matrix RNA‑sequence analysis
PSG NuMat RNA datasets of 5th instar day 1 (SG 1), 
day 5 (SG 5) and day 7 (SG 7) were acquired from NCBI 
SRA database [11–13]. These datasets were mapped data 
against B. mori reference genome (Bomby​x mori (assem​
bly Bmori_​2016v1.​0), https://​www.​ncbi.​nlm.​nih.​gov/​
genom​e/?​term=​txid7​091[Organism:noexp]) using the 
‘BOWTIE2’ tool (Additional file 3: Table S1). SSR predic-
tion was carried out with the mapped datasets (SG 1, SG 
5 and SG 7) using the MISA software. Gene identifica-
tion and quantification was carried out based on mapped 
data. The total aligned reads to genes were counted using 
HTSeq. The read counts for individual genes were used 

to construct the expression profile at gene level. A total 
of 9623, 8042 and 8499 expressed genes were found in 
the three datasets. The “diamond” tool (https://​github.​
com/​bbuch​fink/​diamo​nd) was used to perform BLAST 
of the input nucleotide sequences (gene sequences of 
all the expressed genes fetched from B. mori genome 
[ https://​www.​ncbi.​nlm.​nih.​gov/​genom​e/?​term=​txid7​
091[Organism:noexp]) using blastx against the Insecta 
protein sequences downloaded from Uniprot database 
(subject sequences) (https://​www.​unipr​ot.​org/​unipr​ot/?​
query=​taxon​omy:​50557).

The GOs were mapped against expressed transcripts. 
KAAS (KEGG Automatic Annotation Server) was 
used and BLASTx (with parameters: e-value 1e-05 and 
minimum similarity > 30%) was performed for query 
sequences (amino-acid sequences of the protein-coding 
genes) which were aligned against the B. mori refer-
ence genome (Bomby​x mori  (assem​bly Bmori_​2016v1.​
0), https://​www.​ncbi.​nlm.​nih.​gov/​genom​e/?​term=​txid7​
091[Organism:noexp]) to identify the biological pathways 
associated with the expressed genes. The biological func-
tions associated with these genes were also determined.

Results and discussion
The genomic organisation, its regulation and the pro-
cesses in regard to its functioning are part of the nucleus 
[14–17]. The placement of elements responsible for 
genetic regulation is specific to the relevant develop-
mental stage. Nuclear matrix RNA, a major constitu-
ent of the nuclear framework regulates gene expression 
during development via organisational modifications 
and structural composition [18–22]. Gene expression 
is linked to the spatial and temporal organisation of the 
genes facilitated by their anchoring to the nuclear matrix. 
RNA maintains chromatin structure and regulates gene 
expression [23, 24]. A study on the developmental stage-
specific expression of fibroin in PSGs of B. mori, found 
considerable increase in the expression levels of fibroin 
RNA during the 5th instar compared to the 4th instar 
larval stage [25]. However, the NuMat RNA levels in the 
PSG of B. mori have not been studied. To measure the 
abundance and size of RNA associated with the nuclear 
matrix of B. mori, nuclear and NuMat RNA were isolated 
from PSGs at day 1, day 5, and day 7 of development. 
Agarose gel electrophoresis was performed without for-
mamide and formaldehyde to check the RNA enrich-
ment. The data showed that NuMat RNA approximately 
ranged in size from 100 to 400  bp (Fig.  1A; Additional 
file  1: Fig. S1). While the agarose gel electrophoresis 
results show the enrichment of RNA, the precise deter-
mination of the size of NuMat RNA requires a more 
sensitive approach. Therefore, TapeStation analysis of 
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the NuMat RNA libraries of the three datasets was car-
ried out prior to sequencing which showed the size to be 
between 200 to 1000 bp (Additional file 2: Fig. S2). The 
amount of nuclear RNA showed a significant increase 
from day 1 to day 5 (p < 0.05) but no significant increase 
from day 5 to day 7 (p > 0.05). This correlates with the 
increase in protein expression observed on day 5 of the 
5th instar larval development. The amount of nuclear 
RNA retained in the nuclear matrix on day 1, 5, and 7 
were 33.33%, 50% and, 80% respectively. The NuMat 
RNA showed a significant increase in concentration from 
day 1 to day 5 (p < 0.05) and from day 5 to day 7 (p < 0.05) 
(Fig. 1B). It is interesting to note that an increase in con-
centration of NuMat RNA on day 7 (towards the wander-
ing stage) was observed despite no significant change in 
concentration of nuclear RNA from day 5 to day 7. This 
is likely because the role of NuMat RNA in regulation of 
gene expression during larval to pupal transition on day 7 
marks the end of the 5th instar. The influence of NuMat 
RNA on fibroin gene expression may also be a factor, as 
maximum silk is produced during the wandering stage to 
prepare for cocoon formation.

To study the composition of NuMat RNA repeats, 
SSRs were determined for all 3 days (Additional file  4: 
Table  S2). SSRs are short repeating chains that include 
a repeating unit of 1–6  bp, and are essential for main-
tenance and vitality of NuMat structure and gene 

expression. In D. melanogaster, a novel lncRNA with 
AAGAG repeats in NuMat was found to be essential in 
maintaining structural organisation of interphase chro-
mosomes and compartmentalising of nuclear organelle. 
It was also shown to be indispensable for pupal formation 
and survival [6]. In this study, the mono-nucleotides, tri-
nucleotides and tetra-nucleotides were most abundant 
during 5th instar development while the penta-nucleo-
tide repeats were fewer in comparison (Fig. 2A). On day 
1, the repeats CUUU, UUUU, UUGGU, UGCUU, UGC​
UCC​ and GCU​GGU​ were most abundance. On day 5, 
the repeats CUGG, the telomeric repeat CCUUU and the 
repeats UUUUG and GCU​GGU​ were most abundant, 
and on day 7, UCGC, CUGG, UCGG, GCCGU, UGC​
UCC​ were the most abundant (Fig.  2B–D). It is note-
worthy that the TTAGG/CCUAA transcript of telomeric 
repeat found on day 5 is conserved in insects and is regu-
larly interrupted by non-LTR retrotransposon elements 
in B. mori [26]. The repeats UGC​UCC​ and GCU​GGU​ 
occurred abundantly on all three days, suggesting a role 
for general structural or functional maintenance in the 
NuMat. The change in the composition and abundance 
of nuclear matrix-associated repeats from day 1 to day 5 
and day 5 to day 7 highlight the dynamic nature of the 
nuclear matrix structure. SSRs were found to be highly 
enriched in all three datasets and a high variation in the 
SSRs was  observed in all three days of the 5th instar in 

Fig. 1  Isolation of nuclear matrix RNA from 5th instar posterior silk glands of B. mori. A A representative image of the day 5 NuMat RNA (1) 
separated on 1.2% agarose gel alongside a 100 bp DNA ladder (M). The marker lane and the day 5 NuMat RNA were selected from the full image 
given in Additional file 1: Fig. S1. B The nuclear and NuMat RNA of day 1, day 5, and day 7 were quantified using UV spectrophotometry (day 1: 
n = 30, day 5: n = 15, day 7: n = 10). Student’s t-test assuming unequal variances was used for statistical analysis. Asterisk shows significant variation 
(p < 0.05). The nuclear retention of RNA in the nuclear matrix was identified by comparing the nuclear and NuMat RNA concentrations on different 
days of 5th instar development. The nuclear RNA increased significantly from day 1 to day 5 (as represented by the asterix on the blue bar of day 5 
on the graph). The NuMat RNA increased significantly from day 1 to day 5 and from day 5 to day 7 (as represented by the asterix on the orange bars 
of day 5 and day 7 in the graph)
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accordance with the high complexity and multi-factorial 
regulation of the posterior silk glands. Furthermore, the 
genes associated with the NuMat RNA, were identi-
fied from the three developmental datasets SG 1, SG 5, 
and SG 7. GO analysis revealed that half of the genes 
(56.22%, 54.02% and 54.18% in day 1, day 5 and day 7, 
respectively) had molecular functions. These included, 
metal ion binding—particularly magnesium, calcium and 
zinc ion binding, nucleic acid binding—specifically DNA 
binding functions, nucleotide binding, helicase activity, 
RNA–DNA hybrid ribonuclease activity, RNA directed 
DNA polymerase activity, ATP binding, sequence-spe-
cific DNA binding transcription factor activity, transcrip-
tion cofactor, coactivator and co-repressor activity, RNA 
binding, structural constituent of ribosome, transla-
tion initiation factor activity, translation elongation and 
release factor activities, catalytic activity, GTPase activity, 
oxidoreductase activity, transferase and phosphotrans-
ferase activity, hydrolase activity, and transmembrane 
transporter activity. These functions imply that the 
NuMat RNA is likely intricately involved in transcription. 
There is an increase in the number of NuMat RNA linked 
genes associated with cellular components from day 1 
to day 5 that are maintained at day 7 (Fig. 3A). Further, 
downstream analysis associated with the expression data 

revealed that most of the genes were involved in meta-
bolic, signaling and genetic pathways (Fig. 3B). The most 
abundantly occurring pathways are the genetic pathways 
(55.11%, 43.09% and 42.57% in day 1, day 5, and day 7, 
respectively) which decreased from day 1 to day 7. The 
genetic pathways associated with the NuMat included 
chromosomal and associated proteins, basal transcrip-
tion factors, mRNA biogenesis, transcription machinery, 
RNA polymerase and translation factors; further validat-
ing the role of NuMat RNA in the regulation of transcrip-
tion and translation. The signaling pathways increased 
from day 1 to day 5 but significantly decreased from day 
5 to day 7. The metabolic pathways however see a steady 
and clear increase from day 1 to day 5 to day 7. Genes 
involved in apoptosis, endocytosis, lysosome, dorso-
ventral axis formation, DNA replication, etc., were also 
found in abundance which correlate with larval to pupal 
transition at the end of 5th instar and the beginning of 
cocoon formation. Similar results by earlier studies 
showed an increase in the expression of genes associ-
ated with apoptosis and autophagy for preparation of 
metamorphosis. The analysis of apoptosis related genes 
during larval to pupal transition showed an increased 
transcription of BmDredd in MSGs and PSGs of B. mori 
participating in silk gland degradation [27]. Similarly, the 

Fig. 2  SSR Prediction. A Comparison of the types of SSRs identified. B Tetra-nucleotide (C) Penta-nucleotide and (D) Hexa-nucleotide repeats 
identified in the SG 1, SG 5, and SG 7 nuclear matrix RNA datasets
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expression BmEcR, found upstream of BmDredd, along 
with BmE74A and Bm Br-c was responsible for triggering 
autophagy and apoptosis pathways in the silk glands [28]. 
These studies correlate with the increased expression of 
apoptopic genes supporting pupal transition found in our 
study.

Our results show that the nuclear matrix RNA is 
highly repetitive and dynamic in nature underscoring 
its role in chromatin architecture and gene expression.

Limitations
The data used for analysis in this paper was obtained 
from a single rearing by pooling PSGs of CSR2XCSR4 
strain of Bombyx mori.
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