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Abstract 

Objective:  Elizabethkingia meningoseptica is a multidrug resistance strain which primarily causes meningitis in neo-
nates and immunocompromised patients. Being a nosocomial infection causing agent, less information is available in 
literature, specifically, about its genomic makeup and associated features. An attempt is made to study them through 
bioinformatics tools with respect to compositions, embedded periodicities, open reading frames, origin of replication, 
phylogeny, orthologous gene clusters analysis and pathways.

Results:  Complete DNA and protein sequence pertaining to E. meningoseptica were thoroughly analyzed as part 
of the study. E. meningoseptica G4076 genome showed 7593 ORFs it is GC rich. Fourier based analysis showed the 
presence of typical three base periodicity at the genome level. Putative origin of replication has been identified. 
Phylogenetically, E. meningoseptica is relatively closer to E. anophelis compared to other Elizabethkingia species. A total 
of 2606 COGs were shared by all five Elizabethkingia species. Out of 3391 annotated proteins, we could identify 18 
unique ones involved in metabolic pathway of E. meningoseptica and this can be an initiation point for drug design-
ing and development. Our study is novel in the aspect in characterizing and analyzing the whole genome data of E. 
meningoseptica.
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Introduction
In 1959, Elizabeth O King, discovered Elizabethkingia 
(renamed in 2005) [1], earlier known as Chryseobacte-
rium. It is a non-glucose fermenting, non-motile, cata-
lase-oxidase positive gram negative bacteria belonging 
to Flavobacteriaceae family, ubiquitous in soil, fresh and 
salty water [2]. The genus comprises of six species [3] 
that is, E. meningoseptica associated with meningitis and 
sepsis in premature neonates, [4, 5] E. anophelis isolated 
from the midgut of Anopheles gambiae mosquitoes which 

causes respiratory tract illness in human [6], E. miricola, 
isolated from condensation water on the Mir space sta-
tion of Russia collected in 1997 [7], and E. brunniana, E. 
ursingii and E. occulta (three CDC genomospecies) [8].

Elizabethkingia meningoseptica is causative agent 
of meningitis in neonates and sepsis in immunocom-
promised patients [9]. The occurrence of nosocomial 
infection has risen, mainly in patients, with prolonged 
hospitalization, treated with invasive procedures, subse-
quently on use of broad-spectrum antimicrobials as well 
as having concomitant infections [10]. The mortality rate 
in patients infected with E. meningoseptica is significantly 
higher due to its unusual resistance pattern and mecha-
nism [11]. Further studies are needed to initiate the most 
effective therapeutic approach. One can follow the time 
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consuming and labor-intensive experimental approach 
but advancement in bioinformatics field provided enor-
mous software tools, that are used to analyze and extract 
information from the molecular sequence, structure, 
expression and pathway data [12, 13].

The current study focused on analyzing the whole 
genome data of Elizabethkingia to unravel the embedded 
features hitherto not reported, secondly to explore the 
possibility of getting some lead in the directions of pos-
sible novel therapeutic candidates. Accordingly, we have 
studied genomic features, origin of replication sites, phy-
logenetic relationships, comparative genomics among E. 
meningoseptica species and further explored subtractive 
genomics approach together with pathway analysis.

Main text
Methods
Genome analysis of E. meningoseptica G4076 and its 
comparisons with Elizabethkingia family
The whole genome (Accession Number NZ_CP016376) 
and protein sequences of Elizabethkingia meningoseptica 
G4076 were downloaded from NCBI (www.​ncbi.​nlm.​nih.​
gov). Nucleotide composition of genome was obtained 
using ORIS software [14]. To find all open reading frames 
in the genome, ORF finder, a graphical tool was used 
(https://​www.​ncbi.​nlm.​nih.​gov/​orffi​nder/) [15]. CG-
Viewer was used for plotting circular plot of genomes 
[16]. Discrete Fourier Transform based computational 
approach using customized python codes was carried out 
to see the typical three-base periodicity feature embed-
ded in E. meningoseptica genomic sequence [17]. Rapid 
Annotation using Subsystem Technology (RAST) server 
was carried out for studying genome annotation [18, 19]. 
Ori-Finder [20] and ORISv1.0 [14] software tools were 
used to identify putative origin of replication (oriC) sites 
in the genome. MegaX software was utilized to carry out 
phylogenetic analysis for species within the same genus 
such as E. miricola, E. meningoseptica, E. anophelis, E. 
bruuniana, E. ursingii and E. occulta as well as Flavobac-
terium coloumnare ATCC49512, Riemerella anatipes-
tifer ATCC11845 (other genus in same family) [21]. The 
orthologous gene identification among Elizabethkingia 
species was carried out using Orthovenn2 with default 
parameters [22, 23].

Subtractive genomics based computational analysis
All protein sequences of Elizabethkingia meningosep-
tica G4076 and Homo sapiens (Host) were downloaded 
from NCBI database [24, 25]. Out of the total 3406 pro-
teins in E. meningoseptica, hypothetical proteins and 
proteins having length less than 100 amino acids were 
discarded. Remaining 2503 proteins were subjected to 
BLASTP against proteomes of Homo sapiens [26]. Based 

on previous studies, expectation value cut off of 10–4 and 
minimum bit score of 100 used as threshold to short-
list non-homologous proteins [27]. Further, these non-
homologous proteins were queried against Database 
of Essential Genes (DEG) server to get a list of essen-
tial genes for E. meningoseptica using e-value cut off 
10–10 and bit score value of 100 as threshold [28]. These 
shortlisted essential genes that were non-homologous to 
host and essential for bacteria were studied further with 
respect to metabolic pathway.

Metabolic pathway analysis and subcellular localization 
prediction
Essential non-homologous proteins of E. meningoseptica, 
were further analyzed using KAAS (KEGG Automated 
Annotation Server) in order to study metabolic path-
ways [29]. KEGG analysis performed BLAST comparison 
against available KEGG gene database and provide met-
abolic pathway maps including KO and EC number for 
a particular gene. To determine the location of proteins 
in a cell PSORTb version 3.0 server was used [30]. The 
essential gene subjected to BLASTP analysis against FDA 
approved drug targets from Drugbank to search novel 
drug targets. Targets with identification of more or equal 
80% are druggable targets and others that show consider-
able low degree of matching with already approved drug 
target can be used as novel targets for new drug identifi-
cation [31].

Results
Genomic features of E. meningoseptica G4076 and its 
comparison with other species
The whole genome data of E. meningoseptica G4076 
having length of 3,873,125  bp showed a mean GC con-
tent of 36.5%, number of genes as per annotation is 3477 
and the percentage base composition viz %A ≈ %T i.e., 
31.76 and %G ≈ %C i.e., 18.23 calculated using ORIS 
software [14] (Additional file  1: Figure S1) which is in 
agreement with Chargaff’s parity rule [32]. Open reading 
frame is effective in identifying genes that encodes pro-
teins. Total number of 7593 ORFs were found in whole 
genome. The products are of varying length and it shows 
that the number of ORFs found are actually slightly more 
than the annotated number of proteins (Additional file 1: 
Figure S2). To visualize sequence conservation, the cir-
cular genome plot was created using CG view Server 
(Additional file  1: Figure S3). Gene coding segments of 
E. meningoseptica genome does show the typical three-
base periodicity indicating underlying codon structure 
that enables us to predict and identify all possible genes 
in majority of the bacterial genome with very high accu-
racy [17]. Additional file 1: Figure S4A shows all the bases 
considered for the fourier spectrum and indicates the 
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presence of three base periodic signal as seen in most 
of bacterial genomes. Signal strength is prominent for 
purine-pyrimidine (Additional file 1: Figure S4B) whereas 
in the case of individual bases it is considerably low 
(Additional file 1: Figure S4C–F).

RAST server shows annotated data indicating 3477 
putative genes, 61 RNAs which includes 4,4,4 (5S, 16S, 
23S) ribosomal RNAs and 49 tRNAs and 335 subsystems 
(set of functional role) under 27 categories [18]. Sixty two 
coding sequences were related with antibiotics resistance 
and toxic compounds which suggests E. meningoseptica 
might be multiple drug resistant (Additional file 1: Figure 
S5).

Ori-Finder (a web based software tool for find-
ing oriCs) predicted oriC region of 649  bp ranging 
from 740,720  bp to 741,368  bp having three DnaA box 
sequence motifs (TTA​TCC​ACA) with no more than 
one mismatch. Further, replication related gene, dnaA 
located from 2,613,273 to 2,614,727  bp which is fol-
lowed by dnaN gene (Fig.  1A) [20]. A cluster of three 
DnaA boxes and two AT rich DNA unwinding elements 
(DUE) are indication of functional chromosomal origin 
(Fig.  1F). Similar kind of result was found with ORIS 
v1.0 software tool. DNA asymmetry, distribution of 
DnaA boxes as well as location of the dnaA gene help 
in predicting OriC regions [33–36]. Both graphs enable 
us to pin-point or identify ORI/TER site. The difference 
in the position (genome coordinates) of OriC predicted 
by Ori-Finder and ORIS are well within 1 kb and hence, 
close agreement.

Genomic comparison among Elizabetkingia species  
[E. meningoseptica G4076 (WP_016198861.1), E. miricola  
BM10 (WP_034866598.1), E. ursingii G4123 (WP_078 
402796.1),  E.  anopheles  NUHP1(WP_009086312.1) 
E. bruuniana G0146(WP_034866598.1), F. columnare 
ATCC49512(WP_014166114.1),   R.  anatipestifer 
ATCC11845(WP_004918717.1)] has been done using 
MEGAX software. It depicts phylogenetic relatedness 
by comparing homology of protein sequence specifically 
16S rRNA processing Protein RimM (Ribosomal matu-
ration factor RimM) (Additional file  1: Figure S6) [37]. 
It has been found that E. meningoseptica are relatively 
at a large phylogenetically distance from other species 
of Elizabethkingia. Cluster of orthologous gene analy-
sis of E. meningoseptica G4076 was compared with four 
other species of Elizabethkingia to provide insights into 
biological process, molecular functions and cellular com-
ponents [22, 23]. It was found that among 3970 clusters, 
1401 were orthologous clusters which contain at least 
two species and 2569 singletons. The number of orthol-
ogous genes shared by five species of Elizabethkingia 
genome was 2606 whereas 17 COGs were present only 
in Elizabethkingia meningoseptica G4076 genome which 

is involved only in metallopeptidase activity (Additional 
file  1: Figure S7). In pairwise comparison ranges varies 
from 3396 to 3409 COGs (Additional file 1: Figure S7C).

Prediction of essential genes in Elizabethkingia 
meningoseptica
Subtractive genomic analysis is unique, fast and efficient 
method for identifying essential genes in pathogenic spe-
cies that are non-homologous to human (host). These 
non-homologous essential genes can be used as puta-
tive drug targets against pathogens [38]. The genome of 
E. meningoseptica G4076 has 3391 annotated proteins. 
After exclusion of protein which are < 100 amino acids 
and hypothetical, remaining 2503 were subjected to 
BLASTP against proteins of Homo sapiens (host). Using 
e-value cut off 10–4 and bit score > 100, it was found total 
of 2052 proteins were non-homologous to host protein. 
Thereafter, these proteins were subjected to BLAST anal-
ysis using DEG server and using e-value cut off 10–10 and 
bit score > 100, shortlisted 692 proteins that are essential 
for E. meningoseptica G4076 but absent in host (Addi-
tional file  1: Table  S1). DEG contains gene that plays 
important role in cell survival and can be novel targets 
for antibacterial drugs (Fig. 2).

Metabolic pathway analysis of essential gene and subcellular 
localization prediction
The shortlisted non-homologous essential genes were 
analyzed using KEGG database for metabolic pathway 
annotation. It was found, only 41 out of 692, are present 
in pathogen as unique pathways (Table  1). Majority of 
them were involved in DNA binding response regulator, 
ribosomal proteins, replication and repair, Glycan bio-
synthesis, protein folding and sorting, two-component 
system, biotin metabolism and ATP transporters. It is 
very important for drug designing to determine whether 
target protein resides on cell surface or in cytoplasm. 
Localization of proteins play important role in drug bind-
ing and action. Subcellular localization reveals, out of 41 
target proteins, 80% of total are cytoplasmic, rest located 
in periplasm or cytoplasmic membrane and no extracel-
lularly proteins were obtained (Additional file  1: Figure 
S8). Extracellularly secreted proteins may be better opted 
for vaccine development. Here, it is clear that majority of 
proteins resides in cytoplasm and cytoplasmic membrane 
that further can be considered as potential therapeutic 
targets. Unique E. meningoseptica essential proteins non-
homologous to host further subjected to BLASTP against 
FDA approved drug targets from Drugbank which short-
listed to 18 target proteins. Out of which penicillin bind-
ing protein (2), ABC transporter ATP binding proteins 
(2) that targets for broad-spectrum antibiotics. The rest 
includes ribosomal proteins (rpsB, rpsl, rpsG, rpsJ, rpsE, 
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Fig. 1  Output results using Ori-Finder—A Z curve (AT, GC, RY and MK disparity) for Elizabethkingia meningoseptica G4076. Peaks with the diamonds 
show DnaA boxes, bold arrow indicates oriC location, and solid short black lines show replication marker genes i.e., dnaN, dnaA, gidA, hemE etc). 
B–E Cumulative GC, AT, MK, RY skew graph of E. meningoseptica G4076 using ORISv1.0 software tool having window size 40,000 with increment of 
4000 bp. Bold solid arrow indicates putative ori site. F OriC sequence wherein showed DnaA boxes (capitalized and underlined) with not more than 
one mismatch to E. coli DnaA box. AT clusters, in oriC region are shown in bold
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rpsM, rpsK, rpsD, rplD, rplP), recombination protein 
(recR), DNA polymerase subunit III tau (dnaX), and sig-
nal peptidase which could be further explored as starting 

point for discovering novel drug candidate. Ribosomal 
proteins can be more suitable candidates for drug bind-
ing as it mainly involves in translation. Another work also 

Proteome of Elizabethkingia meningoseptica G4076
(3406 Annotated Proteins)

Removing Hypothetical Proteins and Proteins less than 
100 AAs

Discard

Essential proteins in E. meningoseptica
Non-homologous to Homo sapiens

(692 proteins)

Remaining 2503 proteins 
BLASTP against Homo 
sapiens protein (Host)

E-value :10 
-4

Bit Score: >100

Proteins non-homologous to Host Protein
(2055 proteins)

BLASTP against 
Database of Essential 

Genes

E-value :10 
-10

Bit Score: >100Discard

Pathway Annotation using KAAS

41 Putative therapeutic candidates

Fig. 2  Flow chart for identification of putative drug targets
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Table 1  Unique and novel essential genes in E. meningoseptica G4076

a Potential therapeutic candidates as per FDA approved drugbank

Protein product Protein name KEGG orthology EC Subcellular localization

Two component system

 WP_016198590.1 Response regulator transcription factor K07665 – Cytoplasmic

 WP_016199055.1 LytTR family DNA-binding domain-containing protein K07705 – Cytoplasmic

 WP_016198441.1 Response regulator transcription factor K07665 – Cytoplasmic

 WP_016199099.1 LytTR family DNA-binding domain-containing protein K07705 – Cytoplasmic

 WP_016200043.1 VanW family protein K18346 – Unknown

 WP_016199769.1 Two-component sensor histidine kinase K07636 2.7.13.3 Cytoplasmic membrane

Beta-lactam resistance

 WP_016170088.1 Penicillin-binding protein 2a K05515 3.4.16.4 Cytoplasmic membrane

 WP_016170028.1 Transglycosylase domain-containing proteina K05366 2.4.1.129 Cytoplasmic membrane

DNA replication

 WP_016169884.1 Ribonuclease HI K03469 3.1.26.4 Unknown

 WP_016199473.1 DNA primase K02316 2.7.7.101 Cytoplasmic

 WP_019051072.1 DNA polymerase III subunit gamma/taua K02343 2.7.7.7 Cytoplasmic

 WP_016198779.1 DNA polymerase III subunit delta\′ K02341 2.7.7.7 Cytoplasmic

Homologous recombination

 WP_016199810.1 Holliday junction branch migration protein RuvA K03550 3.6.4.12 Cytoplasmic

 WP_016198560.1 Holliday junction branch migration DNA helicase RuvB K03551 3.6.4.12 Cytoplasmic

 WP_016200627.1 Recombination protein RecR K06187 – Cytoplasmic

 WP_016199534.1 DNA replication and repair protein RecF K03629 –

Translation

 WP_009085459.1 30S ribosomal protein S2a K02967 – Cytoplasmic

 WP_016200426.1 30S ribosomal protein S9a K02996 – Cytoplasmic

 WP_009087380.1 30S ribosomal protein S12a K02946 – Cytoplasmic

 WP_009087378.1 30S ribosomal protein S7a K02992 – Cytoplasmic

 WP_016197802.1 30S ribosomal protein S10a K02946 – Cytoplasmic

 WP_009087341.1 50S ribosomal protein L4a K02926 – Cytoplasmic

 WP_016197785.1 50S ribosomal protein L16a K02878 – Cytoplasmic

 WP_009087327.1 50S ribosomal protein L14 K02874 – Cytoplasmic

 WP_016197784.1 50S ribosomal protein L24 K02895 – Cytoplasmic

 WP_009087314.1 30S ribosomal protein S5a K02988 – Cytoplasmic

 WP_016197779.1 50S ribosomal protein L15 K02876 – Cytoplasmic

 WP_016197776.1 30S ribosomal protein S13a K02952 – Cytoplasmic

 WP_009087288.1 30S ribosomal protein S11a K02948 – Cytoplasmic

 WP_016170211.1 30S ribosomal protein S4a K02986 – Cytoplasmic

 WP_016170209.1 50S ribosomal protein L17 K02879 – Cytoplasmic

 WP_016198862.1 30S ribosomal protein S16 K02959 – Cytoplasmic

 WP_016200457.1 50S ribosomal protein L20 K02887 – Cytoplasmic

 WP_016199408.1 30S ribosomal protein S1 K02945 – Cytoplasmic

 WP_016200561.1 50S ribosomal protein L9 K02939 – Cytoplasmic

ABC Transporters

 WP_016198610.1 ATP-binding cassette domain-containing proteina K09812 – Cytoplasmic membrane

 WP_016198126.1 ABC transporter ATP-binding proteina K09810 7.6.2.- Cytoplasmic membrane

Protein export

 WP_026149261.1 Signal peptidase Ia K03100 3.4.21.89 Cytoplasmic membrane

Methane metabolism

 WP_016198134.1 Phosphoenolpyruvate carboxylasea K01595 4.1.1.31 Cytoplasmic

Base excision repair

 WP_016170024.1 Endonuclease III K10773 4.2.99.18 Cytoplasmic

Biotin metabolism

 WP_016199146.1 Dethiobiotin synthase K01935 6.3.3.3 Cytoplasmic
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lend support for choosing the specific drug target [39]. In 
that regard, computational analysis may include homol-
ogy modelling and docking of selected candidate.

Discussions
Meningitis and sepsis is a major illness in newborn and 
immunocompromised patients caused by Elizabethkingia 
meningoseptica. Though typical clinical diagnostics are 
used to identify the illness but a greater understanding of 
molecular based diagnosis is desired and it is a long term 
goal. Increase in number of cases in Intensive care units 
(ICUs) makes it big challenge for clinicians to deal and 
manage. In this context, comprehensive analysis of whole 
genome data and pathway analysis were explored as we 
do not see much work related to computational analysis. 
Accordingly, bioinformatics approach was undertaken 
for characterizing molecular sequence data of Eliza-
bethkingia. Our study identified 41 unique proteins in 
Elizabethkingia with respect to the host using subtrac-
tive genomics which further narrow down to18 therapeu-
tic target proteins using in-silico comparative genomics. 
The suitable shortlisted ribosomal proteins which are 
linked to translation may be useful for future treatment 
and management of the infection. We have studied in an 
integrated fashion of considering and analyzing sequence 
data of E. meningosptica together with pathway analysis. 
Our study is small step in the direction of rapid diagnosis 
and possible drug development.

Limitations
The current investigation is limited to in silico study only.
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