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Abstract 

Objective:  The determination of the location of quantitative trait loci (QTL) (i.e., QTL mapping) is essential for identify-
ing new genes. Various statistical methods are being incorporated into different QTL mapping functions. However, 
statistical errors and limitations may often occur in a QTL mapping, implying the risk of false positive errors and/or 
failing to detect a true positive QTL effect. We simulated the power to detect four simulated QTL in tomato using cim() 
and stepwiseqtl(), widely adopted QTL mapping functions, and QTL.gCIMapping(), a derivative of the composite inter-
val mapping method. While there is general agreement that those three functions identified simulated QTL, missing 
or false positive QTL were observed, which were prevalent when more realistic data (such as smaller population size) 
were provided.

Results:  To address this issue, we developed postQTL, a QTL mapping R workflow that incorporates (i) both cim() and 
stepwiseqtl(), (ii) widely used R packages developed for model selection, and (iii) automation to increase the accu-
racy, efficiency, and accessibility of QTL mapping. QTL mapping experiments on tomato F2 populations in which QTL 
effects were simulated or calculated showed advantages of postQTL in QTL detection.
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Introduction
Quantitative trait loci (QTL) affect the phenotypic vari-
ation observed in quantitative characters. Quantitative 
traits (character) display a continuous distribution of 
phenotypes, and many agronomically important traits 
(e.g., yield) belong to quantitative traits. Therefore, QTL 
mapping, the determination of the location of QTL, is 
one of the first steps to build a scientific basis for plant 
genetics and breeding.

Various statistical methods have been used for QTL 
mapping (e.g., Analysis of variance (ANOVA) [1], inter-
val mapping (IM) [2], composite interval mapping (CIM) 

[3–6], multiple interval mapping (MIM) [7], Bayesian 
methods [8], and genetic algorithms [9]). Among these, 
the CIM method, which uses genetic marker covari-
ates to detect QTL, is widely adopted in plants for QTL 
models [10]. Several more recent derivates of the original 
CIM are also available (e.g., inclusive composite interval 
mapping (ICIM) [11] and genome-wide composite inter-
val mapping (GCIM) [12, 13]).

Broman and Speed [14] stated that the key problem 
with CIM is the choice of the set of markers to use as 
regressors, inevitably affecting the power for QTL detec-
tion (e.g., increasing the variance of the logarithm of the 
odds (LOD) score). Likewise, QTL mapping is a model 
selection problem closely concordant with control-
ling the inclusion of extraneous loci while identifying as 
many true QTL as possible [14, 15]. While an exhaustive 
model search would be the ideal solution to the problem, 
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dramatically increasing computational demands by con-
solidating different models/large genotypic datasets are 
less clearly advantageous to non-specialist researchers 
such as plant breeders. In QTL mapping, forward selec-
tion or some version of stepwise selection is commonly 
used because of its computational efficiency and a close 
approximation of the best subset selection [14–16]. 
Recently, an R/qtl function stepwiseqtl() with a forward/
backward stepwise search algorithm was implemented in 
the R/qtl package (note stepwiseqtl() was added to R/qtl 
version 1.09 and later [15]).

Regularization methods (e.g., minimax concave pen-
alty (MCP) [17], least absolute shrinkage and selection 
operator (LASSO) [18]), have been used in statistics and 
machine learning for feature selection (e.g., adopted in 
genomic prediction [19, 20]). Practical implications of 
such methods for QTL mapping would help us to select a 
true QTL by distinguishing a true QTL effect from extra-
neous loci-driven noise (e.g., regression coefficients for a 
given marker shrink to near 0 where a model fits).

Given the above information, a comprehensive 
approach integrating the results from both mapping 
functions, cim() (note that a version of the CIM method 
is implemented into the R/qtl) and stepwiseqtl(), and 
regularization method(s) may be as good as a single 
function-driven QTL mapping, or an optimal strategy 
to improve the accuracy of true positive QTL identifi-
cation. Here, we present postQTL, a QTL mapping R 
workflow that incorporates (i) both cim() and stepwise-
qtl(), (ii) widely used R packages developed for model 
selection, and (iii) automation to increase the accuracy, 
efficiency, and accessibility of QTL mapping. postQTL 
is an R script that executes several R function()s and R 
packages connected by the R language. This package has 
been developed to be straightforward for use in a typi-
cal R environment on Linux/PC hardware. We focus on 
the tomato, a model fruit crop with relatively large QTL 
mapping efforts.

Main text
Methods
Simulating QTL mapping data
In this study, we used the R environment (version 4.1.1; 
[21]) with the R/qtl package (version 1.50; [22]) on both a 
stand-alone Windows operating PC and the UF/Research 
Computing Linux server, HiPerGator 3.0 [23]. A genetic 
map created for tomato (Solanum lycopersicum) [24] was 
used to simulate two different sized F2 populations using 
the R/qtl function sim.cross(): F2 individuals with 1000 
(hereafter referred to as population #1) and 100 (hereaf-
ter referred to as population #2) to mimic mapping popu-
lations or breeding studies. Four simulated QTL were 
positioned at 5 cM on each of chromosomes 1, 5, 7, and 

12, and simulated to have additive effect sizes of 1.0, 0.5, 
0.2, and 0.2, respectively (Additional file 1). The missing 
data percentage was set at 50% and an error rate of 1e−4 
was used. Three QTL mapping functions, cim(), QTL.
gCIMapping() (version 3.3.1; an R function implemented 
into the GCIM method [25]), and stepwiseqtl() of the R/
qtl package, were used to map simulated QTL in both 
populations #1 and #2. For cim(), covariates 3 and 11 
were chosen. For each mapping function, 100 iterations 
were performed and the identified QTL were reported.

postQTL
The postQTL R workflow developed for this project con-
sists of six steps (Fig. 1; Additional file 2). The first step 
of the workflow loads the postQTL R script and R pack-
ages. Recent versions of commonly used R packages were 
used for postQTL (the full list of R packages required 
is available at Additional file  3). The postQTL R script 
executes four function()s, map_qtl(), model_qtl(), regu-
larize_qtl(), and model_chromosome(). Before executing 
the script, the user loads an input dataset (a single CSV 
file that carries the genotypic and phenotypic datasets 
is available at Additional file 1). After loading, postQTL 
simultaneously uses cim() with a covariate 11 and step-
wiseqtl() to identify QTL (here performed by a function 
map_qtl()). postQTL performs 10 iterations for cim() and 
a single run for stepwiseqtl(), and then merges the identi-
fied QTL. After identifying QTL, postQTL performs an 
exhaustive model search for markers residing in the iden-
tified QTL using an R function regsubsets() implemented 
in the R package ‘leaps’ [26] (performed by model_qtl()), 
providing information about whether or not identified 
QTL are included in the best model. Such a model search 
restriction over the identified QTL reduces computa-
tional demands. For the QTL identified by stepwiseqtl(), 
a function find.marker() was used to find the nearest 
marker to the QTL. For the QTL by cim(), both a marker 
at the QTL peak position and one of two markers flank-
ing the QTL peak were used. The user determines the 
best model(s) once a list of models with ranks is created 
by postQTL [e.g., choose marker(s) with top Cp value(s); 
note that postQTL outputs BIC and adjusted R2 using 
an R package ‘leaps’ as optional additional resources for 
users). Next, postQTL calculates the regression coef-
ficient (β) for the representative marker(s) in the iden-
tified QTL using regularization methods LASSO and 
MCP (performed by regularize_qtl()). LASSO and MCP 
were implemented using the R packages ‘glmnet’ (ver-
sion 4.1.3; [27]) and ‘picasso’ (version 1.3.1; [28]), respec-
tively. Finally, postQTL performs an exhaustive model 
search with a fixed model size (a default value of 3 was 
set) for each chromosome (e.g., all markers reside on 
chromosome 1) to identify best predictors (performed by 
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model_chromosome()). Theoretically, a true QTL is more 
likely to be physically located near or at those predictors. 
The user can modify arguments listed in postQTL (e.g., 
chromosome, numberofpredictors) for their QTL map-
ping project (e.g., a large number of accurate markers vs. 
a few selected markers). postQTL was tested on a stand-
alone Windows operating PC via an RStudio [29] and 
Linux environment [23] via a terminal emulator.

QTL mapping of tomato height
All mapping methods (cim(), QTL.gCIMapping(), and 
stepwiseqtl()) and postQTL were applied to continu-
ous phenotypic data for the tomato seedling trait. 116 F2 
plants randomly selected from a segregating progeny in 
a population, which is known to show at least two QTL 
(genes) including the tomato BRACHYTIC locus [30] for 
height based on field evaluations, were chosen. The geno-
typic (F2 generation genotyped by the tomato Illumina 
Infinium array and a molecular marker for the tomato 
BRACHYTIC locus; Additional file 4) and phenotypic (F2, 
F2:3, and F2:4; Additional file 5) datasets were prepared as 
described in our previous study [30].

Results
We simulated four QTL with different effect sizes on four 
different chromosomes. We compared the QTL mapping 
results among cim(), QTL.gCIMapping(), and stepwise-
qtl() on two differentially sized populations. In simulated 
population #1 (1000 F2 individuals), cim() exhibited the 
highest frequency of the identification of all four simu-
lated QTL followed by stepwiseqtl() (LOD score > 3.0; 
Fig.  2A). However, in simulated population #2 (100 F2 
individuals), a lower accuracy of the identification of 

simulated QTL was observed for all three mapping func-
tions (Fig.  2B). Both QTL.gCIMapping() and stepwise-
qtl() missed at least one of simulated QTL, while cim() 
identified all four simulated QTL in at least 8% of 100 
iterations. Expectedly, the overall frequency of identi-
fying potential false positive QTL in population #2 was 
higher than in population #1 (Fig. 2C and D). Therefore, 
in the following sections, we demonstrate how postQTL 
performed a QTL mapping and its post-analysis on pop-
ulation #2.

In simulated population #2, the first function of 
postQTL, map_qtl(), identified seven QTL on chromo-
somes 1, 2, 3, 4, 5, 7, and 12 (column named ‘Mapping’ 
in Table 1).

Subsequently, postQTL provided a comprehensive 
approach integrating the results from an exhaustive 
model search for identified QTL and regression coeffi-
cients, which could provide a reasonable guide for QTL 
selection. In terms of exhaustive model search, postQTL 
identified markers located in six identified QTL, except 
for Q3 (column named ‘Model search’ in Table  1). All 
four simulated QTL (Q1, Q5, Q7, and Q12) were cap-
tured by the top models. In the estimated regression 
coefficient test, relatively high deviations from the β value 
0 (i.e., not shrink to near 0) for both LASSO and MCP 
were observed from at least one of the markers repre-
senting the simulated QTL (columns named ‘Regression 
coefficients’ in Table 1). For Q2 and Q4, either an exhaus-
tive model search failed to produce identical markers 
to representative marker(s) listed in the QTL, or one of 
two regression coefficient tests for the representative 
marker(s) shrunk to near 0. In the case of Q3, the exhaus-
tive model search failed to produce any marker(s) on 

# Load postQTL.
library(postQTL)

# Load data.
myqtldata <- qtl::read.cross (format=c("csvr"), file="qtl_data.csv",genotypes=c("a","b","H"))

# Run a QTL mapping.
map_qtl(myqtldata)

# Run a model search for markers residing in the identified QTL.
model_qtl("inputformodelqtl.csv")

# Calculate the regression coefficient for marker(s) in the identified QTL using regularization methods.
regularize_qtl("inputforregularizeqtl.csv")

# Run a model search for each chromosome.
model_chromosome(myqtldata,chromosome,numberofpredictors)

# end

Fig. 1  An overview of the postQTL R workflow
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that chromosome. Additionally, the estimated regression 
coefficient for the marker SL4.0ch03.3639459 in Q3 was 
close to 0.00, which gives further information to exclude 
Q3 from a list of potential true positive QTL.

Finally, postQTL identified the best prediction mark-
ers per chromosome by running a model search with a 
fixed model size of 3 (column named ‘Marker predic-
tion’ in Table  1). Two markers, SL4.0ch01.2691495 and 
SL4.0ch12.7161, were located in the simulated QTL, Q1 
and Q12, respectively. Notably, detection of the marker 
SL4.0ch12.7161, located in one of the small effect QTL, 
provided further information to control the inclusion 
rate of small effect QTL.

To validate that postQTL can be useful to identify 
potential QTL associated with the plant height trait, we 
performed genetic mapping analyses using postQTL and 
previously developed mapping functions, cim(), QTL.
gCIMapping(), and stepwiseqtl(). Three QTL signals with 
significant effects (LOD > 4) were detected from at least 
two filial generations by at least two analyses: a position 
near the BRACHYTIC fine-mapped on chromosome 1 
[30], another position (close to 5.0 Mbp) on chromosome 
1 and an approximate 60.0 Mbp on chromosome 7 (Addi-
tional file  6). Importantly, postQTL exhibited the QTL 
signal on chromosome 7 from all three filial generations 
(F2, F2:3, and F2:4), which indicates this location can be 
used to investigate desirable alleles that might explain the 
phenotypic segregation in the tomato population used in 
this study.

Discussion
Despite the availability of multiple methods for QTL 
mapping, a need exists for a comprehensive approach 
integrating the results from multiple QTL mapping 
methods, which may be the optimal strategy to most 
accurately identify QTL. We developed postQTL, an 
R workflow that implements two widely adopted QTL 
mapping functions. We used postQTL primarily in a 
tomato community, as tested on F2 and other advanced 
populations. However, postQTL should apply to any 
(plant) species as long as the QTL mapping functions, 
cim() and stepwiseqtl(), fit the species of user interest. 
In the mapping of low genetic effect QTL, missing such 
QTL is likely to be observed when researchers repeat 
the mapping analysis with independent imputations. To 
address this, postQTL has the default number of itera-
tions for cim() as 10.

A critical element of any QTL mapping workflow is its 
ease of use. postQTL is suitable for both R environment 
novices and experienced R users. postQTL automates 
the entire QTL mapping process by requiring only one 
R workflow. Further, postQTL only requires commonly 
used R packages in the R program, not requiring addi-
tional processing steps outside of the workflow.

Lastly, postQTL includes regularization methods 
which could be useful supplements to the researcher 

Fig. 2  Comparisons of QTL identified by cim(), QTL.gCIMapping(), and stepwiseqtl() for two differently sized populations. Each figure shows the 
frequency of QTL identified by 100 iterations. A, B Show simulated QTL (a total of four simulated QTL) identified (LOD > 3.0) for populations of 1000 
or 100 F2 individuals, respectively (e.g., the left panel in A shows all four simulated QTL were identified by cim() in at least 70 iterations, while two out 
of four simulated QTL were identified in less than 10 iterations). C, D Show potential false positive QTL identified (LOD > 3.0) for populations of 1000 
or 100 F2 individuals, respectively
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when the conclusions on QTL determination can be 
subject to considerable uncertainty.

Limitations
postQTL limits an exhaustive model search for mark-
ers residing in the identified QTL and for markers for 
each chromosome. Clearly, an exhaustive model search 

Table 1  Detailed output generated by postQTL for a population of 100 F2 individuals (population #2)

n/a: Not available
a Genetic effect

Chromosome 
no

Simulated QTL postQTL Note

Mapping Model search Regression 
coefficients

Marker prediction

Identified QTL Markers LASSO MCP

1 Q1 (1.0)a Q1 SL4.0ch01.2197362 − 0.12 0.00

SL4.0ch01.2487844 0.34 0.00

SL4.0ch01.2691495 SL4.0ch01.2691495 0.81 1.01 SL4.0ch01.2691495

SL4.0ch01.40326692

2 None Q2 SL4.0ch02.429499 − 0.10 − 0.10 False positive

SL4.0ch02.13770617 0.14 0

SL4.0ch02.14095766 SL4.0ch02.14095766 0.03 0.20

SL4.0ch02.8249371

SL4.0ch02.8542361

3 None Q3 SL4.0ch03.3639459 none 0.00 0.00 False positive

SL4.0ch03.11275781

SL4.0ch03.14433259

4 None Q4 SL4.0ch04.18671677 SL4.0ch04.18671677 − 0.37 0.00 False positive

SL4.0ch04.17073658 0.68 0.34

SL4.0ch04.41538629

SL4.0ch04.43011116

5 Q5 (0.5) Q5 SL4.0ch05.796224 SL4.0ch05.796224 0.16 0.20

SL4.0ch05.2349396 SL4.0ch05.2349396 − 4.00 − 0.42

SL4.0ch05.3014277

SL4.0ch05.4441924

6 None None None n/a SL4.0ch06.39779625

SL4.0ch06.40466450

7 Q7 (0.2) Q7 SL4.0ch07.2934431 SL4.0ch07.2934431 − 0.20 − 0.20

SL4.0ch07.1720405 − 0.10 0.00

SL4.0ch07.4104019

SL4.0ch07.7244193

8 None None None n/a SL4.0ch08.15907452

SL4.0ch08.16388051

9 None None None n/a SL4.0ch09.10567972

SL4.0ch09.12706265

10 None None None n/a SL4.0ch10.22453627

SL4.0ch10.53911516

11 None None None n/a SL4.0ch11.36161726

SL4.0ch11.45414687

12 Q12 (0.2) Q12 SL4.0ch12.7161 SL4.0ch12.7161 0.37 0.33 SL4.0ch12.7161

SL4.0ch12.3165252 SL4.0ch12.3165252 − 0.29 − 0.28

SL4.0ch12.49390591
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for all genetic markers incorporated into QTL map-
ping data should be optimized to maximize computa-
tional efficiency.
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