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Radiomics combined with clinical 
characteristics predicted the progression‑free 
survival time in first‑line targeted therapy 
for advanced non‑small cell lung cancer 
with EGFR mutation
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Abstract 

Objective:  This study was to explore the most appropriate radiomics modeling method to predict the progression-
free survival of EGFR-TKI treatment in advanced non-small cell lung cancer with EGFR mutations. Different machine 
learning methods may vary considerably and the selection of a proper model is essential for accurate treatment 
outcome prediction. Our study were established 176 discrimination models constructed with 22 feature selection 
methods and 8 classifiers. The predictive performance of each model were evaluated using the AUC, ACC, sensitivity 
and specificity, where the optimal model was identified.

Results:  There were totally 107 radiomics features and 7 clinical features obtained from each patient. After feature 
selection, the top-ten most relevant features were fed to train 176 models. Significant performance variations were 
observed in the established models, with the best performance achieved by the logistic regression model using 
gini-index feature selection (AUC = 0.797, ACC = 0.722, sensitivity = 0.758, specificity = 0.693). The median R-score was 
0.518 (IQR, 0.023–0.987), and the patients were divided into high-risk and low-risk groups based on this cut-off value. 
The KM survival curves of the two groups demonstrated evident stratification results (p = 0.000).
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Introduction
The EGFR-TKIs (epidermal growth factor receptor-
Tyrosine kinase inhibitors) such as gefitinib and erlotinib 
are used as the first-line treatment for NSCLC (non-small 
cell lung cancer) patients with EGFR mutation. However, 

acquired resistance is usually observed after 9–13 months 
of evident tumor response [1]. Moreover, primary resist-
ance would tend to affect the therapeutic efficacy of TKIs 
by leaving with only a few months of reaction time. In 
this sense, exploring an effective prognostic marker to 
predict the development of TKIs resistance of EGFR pos-
itive patients will be clinically meaningful to allow physi-
cians to timely adjust the treatment strategies.

Radiomics is able to extract quantitative imaging bio-
marker regarding the biological, prognostic and predic-
tive hidden information from medical images. Successful 
application of CT-based (computed tomography) radi-
omics has witnessed in NSCLC prediction and prognosis 
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[2], in particular for prediction of EGFR mutations [3, 4], 
and EGFR-TKI prognosis [5, 6]. These studies empiri-
cally adopted different ML (machine learning) methods 
to build the predictive model, e.g., RF (random forest) [3, 
4] or LASSO regression [5–7], it is still unclear how to 
choose an appropriate ML algorithm for modeling and 
which model is more superior over the other.

The goal of current study is to explore the most 
appropriate radiomics modeling method to predict the 
progression-free survival of EGFR-TKI treatment in 
advanced non-small cell lung cancer with EGFR muta-
tions. In order to screen patients suitable for EGFR- TKI 
therapy.

Main text
Patients
A total of 100 patients with stage IIIB-IV EGFR positive 
NSCLC patients treated with EGFR-TKIs in the Affili-
ated Cancer Hospital of Guangzhou Medical Univer-
sity between January 2016 and December 2019 met the 
inclusion criteria and were finally recruited. The inclu-
sion criteria were as follows: (1) stage IIIB-IV lung ade-
nocarcinoma confirmed by histopathology; (2) patients 
of EGFR mutations with confirmed 19del or 21L858R; 
(3) no treatments received prior to EGFR TKIs therapy; 
(4) the EGFR-TKIs therapy was used as the first-line 
treatment; (5) with complete CT images within 2 weeks 
before EGFR-TKIs treatment. The exclusion criteria 
included: (1) age less than 18  years old; (2) underwent 
any other antitumor therapies; and (3) with incomplete 
clinical records or CT images.

Patients with 19del or 21L858R mutations have received 
gefitinib, erlotinib, or other EGFR-TKIs as first-line treat-
ment. Drugs were orally administrated daily until disease 
progressed. Treatment efficacy evaluations included rou-
tine laboratory tests and chest CT scans at least every 
4–12 weeks. PFS was estimated from the beginning time 
of EGFR-TKIs therapy to the date of disease progression 
or death. The outcome is assessed within 3 months of the 
targeted therapy via the RECIST1.1 criterion. Patients’ 
clinical characteristics including sex, age, stage, smoking 
status, mutations, TKIs and outcome are summarized in 
Additional file 1: Table S1.

Methods
Image acquisition and feature extraction
Pretreatment CT scans were acquired after intravenous 
injection of 100 ml ioversol (Heng Rui Pharmaceuticals, 
Jiangsu China), with scanning parameters of 120  kV, 
160 mAs, 0.6  s rotation time, and image matrix size of 
512 × 512. All patient images were stored in DICOM 
format. The VOI (volume of interest) on CT images 
was delineated independently by two radiologists using 

3D-slicer software (slicer4.10.2, https://​www.​slicer.​
org). The VOI delineation was performed slice-by-slice 
on the CT images with standard mediastinal (window 
width, 400 HU; window level, 40 HU) and lung (window 
width, 1500 HU; window level, − 700 HU) window set-
tings. The conformity of delineated VOIs were measured 
by the Dice similarity coefficient. The two delineated 
VOIs with Dice index greater than 0.9 were averaged to 
yield the final VOI. Discrepancies on the lesion bound-
ary (Dice < 0.9) were resolved by further discussions until 
mutual consensus were reached.

Radiomics features extraction were conducted within 
the VOIs utilized an open-source python package Pyra-
diomics [8]. Extracted features (n = 107, Additional file 1: 
Table  S2) included: (1) first order features (n = 18); (2) 
shape features (n = 14); (3) GLCM (gray level co-occur-
rence matrix) features (n = 24); (4) GLSZM (gray level 
size zone matrix) features (n = 16); (5) GLRLM (gray level 
run length matrix) features (n = 16); (6) NGTDM (neigh-
boring gray tone difference matrix) features (n = 5); (7) 
GLDM (gray level dependence matrix) features (n = 14).

Prediction modeling
Noted that our goal was to identify the most significant 
variables that could discriminate patients with fast and 
slow progression. Thus, the dimension reduction was 
necessary to improve the accuracy in the later step of 
building the machine learning model for classification. 
Therefore, the feature selection was conducted before 
constructing the models, and the most related features to 
this study were selected.

Prediction modeling was performed on 107 radiom-
ics features combined with 7 clinical features (includ-
ing sex, age, stage, smoking status, mutations, TKI, and 
outcome). A specific model was constructed by a feature 
selection procedure followed by a particular classifier. In 
this study, 22 feature selection methods and 8 classifiers 
(Additional file  1: Table  S3) were studied, and therefore 
resulting in 176 prediction models (different combina-
tions of ‘feature selection’ + ‘classifier’) to be evaluated. In 
each prediction model, we empirically set the number of 
selected features to 10 to balance the patient sample size 
vs. feature numbers.

The prediction model was evaluated via a repeated (5 
times) five-fold CV (cross-validation), where 80% and 
20% of the dataset were respectively reserved for model 
training and validation. To reduce the effect of the imbal-
ance, the SMOTE (synthetic minority oversampling) [9] 
technique was applied on the training set in each fold of 
the CV. The prediction performances were quantified by 
the area under the AUC (receiver operating characteris-
tic (ROC) curve), ACC (accuracy), SEN (sensitivity), and 
SPE (specificity).

https://www.slicer.org
https://www.slicer.org
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Statistical analysis
All statistical analyses were conducted using the SPSS 
(version 22.0). Comparison between groups of classi-
fied variables used chi-square test. The Kaplan–Meier 
algorithm was used to estimate the survival curves that 
were compared by the log-rank test. Normality of data 
distribution was assessed by the Kolmogorov–Smirnov 
test. The student’s t-test was used for normally distrib-
uted continuous variables and the Mann–Whitney U 
test was used for non-normally distributed continuous 
variables. A p-value of < 0.05 was regarded as statistically 
significant.

Results
Patient characteristics
A median PFS (10  months) of the whole patient cohort 
was used to divide patients into a rapidly progressing 
group (n = 49) and a slowly progressing group (n = 51). 
The median age of all patients was 59  years. More 
patients with 19del mutation were found in the slow-
progression group (19del vs 21L858R, 59.6% vs 37.5%); 
In contrast, more 21L858R mutation patients were found 
in the fast-progression group (19del vs 21L858R, 40.4% 
vs 62.5%). Significant difference in mutation site of the 
two groups was observed (p = 0.03). In the slow progres-
sion group, 44 (63.8%) patients exhibited ‘CR (complete 
remission)’ or ‘PR (partial remissions)’ after EGFR-TKIs 
therapy, while only 5 (16.1%) patients were categorized 
as ‘SD (stable diseases)’ or ‘PD (progressive diseases)’ (by 
RECIST1.1 criteria). In contrast, in the rapid-progression 
group, only 25 patients (36.2%) achieved CR or PR after 
EGFR-TKIs therapy, and 26 patients (83.9%) were clas-
sified as SD or PD. The clinical factor of ‘CR + PR’ out-
come was found to be associated with better prognosis 
(p = 0.03) by the univariate analysis.

Model performance comparisons
The 107 radiomics features and 7 clinical features were 
obtained from each patient. In each of the 176 model, the 
top-ten most relevant features were selected by feature 
selection and fed to train a classifier in each model. The 
performances of the 176 models are depicted as a AUC 
heatmap as shown in Additional file 1: Fig. S1. The other 
quantitative performance metrics as such ACC, SEN, 
SPE of each model were detailed in Additional file  1: 
Fig. S2. Evident prediction performance variations were 
observed in the evaluated models. The average AUC of 
all 176 models is 0.591 with the maximum AUC of 0.797 
achieved by the model built with LR (Logistic Regres-
sion) and gini-index feature selection (ACC = 0.722, 
SEN = 0.758, SPE = 0.693). While the worst model 
(SVM (support vector machine) and JMI (joint mutual 

information) feature selection) only yield AUC = 0.371, 
ACC = 0.559, SEN = 0.611 and SPE = 0.507. The perfor-
mance of the best 10 models was listed in Table  1. The 
mean AUC tends to significantly (p = 0.000) decline to 
0.524 if only radiomics features were used for modeling, 
as compared with the AUC heatmap shown in Additional 
file 1: Fig. S3. Each of the 176 models were respectively 
trained by all the features (n = 114, including 107 radi-
omics and 7 clinical features) and cross-validated by the 
five-fold cross-validation. The most relevant features had 
been selected in each model, and we can count and rank 
their frequencies of being selected as the top feature, as 
shown in Table  2. The top-ten features most selected 
were marked in blue in Additional file 1: Fig. S4. Among 
these top-ten features, four features including two tex-
ture features (glcm-difference variance: 14.59 ± 6.63 
vs. 18.16 ± 8.71, p = 0.024; glszm-small area emphasis: 
0.68 ± 0.04 vs. 0.70 ± 0.03, p = 0.003) and two clinical fea-
tures (mutation, p = 0.03; outcome, p = 0.000) showed a 
statistically significant difference between the slow pro-
gression group and the fast progression group.

Prognostic performance
We stratified patients by the R-score (risk score) given 
by the best model, i.e., the Gini-index-LR model evalu-
ated from the 176 models. The estimated median R-score 
0.518 (IQR, 0.023–0.987) was used as the cut-off value to 
stratify the high-risk group from the low-risk group. The 
higher the R value, the higher the likelihood of rapid pro-
gression. The KM (Kaplan–meier) method and the Log-
Rank test were used to evaluate and compare the survival 
curves of the high-risk group and the low-risk group. The 
ROC and KM survival curves (p = 0.000) of Gini-index-
LR method were shown in Fig. 1.

Table 1  Feature selection methods and classifiers for the top ten 
models

Classifier Feature 
selection 
method

AUC​ ACC​ Sensitivity Specificity

Logistic gini-index 0.797 0.722 0.758 0.693

Logistic ll-l21 0.763 0.681 0.716 0.653

Bagging CIFE 0.764 0.671 0.636 0.707

Logistic reliefF 0.759 0.662 0.676 0.655

Bagging MRMR 0.743 0.662 0.616 0.729

Bagging MIFS 0.742 0.670 0.656 0.673

Adaboosting f-score 0.740 0.671 0.756 0.593

SVM MRMR 0.739 0.712 0.733 0.695

SVM CIFE 0.734 0.692 0.713 0.676

SVM MIFS 0.734 0.712 0.733 0.695
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Discussion
A particular prediction model can be built with a fea-
ture selection followed by a classifier. Given a large pool 
of available feature selection methods and different clas-
sifier algorithm, their combinations may result in a large 
number of prediction models to choose from. In this 
study, we constructed and comprehensively evaluated 
176 models using 22 feature selection methods and 8 
classifiers. The best model method was gini-index-logis-
tic (AUC = 0.797). The R-score derived from the gini-
index-logistic model was validated on the KM curve, and 

had also achieved satisfactory stratification result. We 
have observed that the other models, e.g., the CIFE-Bag-
ging (AUC = 0.764), the ll-l21-LR (AUC = 0.763), and the 
ReliefF-LR (AUC = 0.759) also demonstrated high pre-
dictive performances. In general, the predictive models 
built with the LR classifier seemed to perform better than 
those models built with the RF classifier, which has been 
used in previous investigations for EGFR mutations pre-
diction modeling [4].

In this study, we have identified two CT image textural 
features, i.e., the GLCM-derived feature "DV (Difference 

Table 2  The top ten features and the corresponding mean (± SD) value (or median (IQR)) and the p-value between the slow and fast 
progression groups

a t-test
b Mann–Whitney U test
c Chi-square test

Feature category Feature Slow-progress Fast-progress p-value

Shape-based (n = 4) Elongation 0.76 ± 0.12 0.71 ± 0.13 0.067a

Least Axis Length 30.06 ± 11.91 20.53 ± 8.85 0.234a

Flatness 0.59 ± 0.14 0.55 ± 0.13 0.229a

Major Axis Length 52.25 (19.52,110.61) 46.56 (23.28,145.60) 0.858b

First-order based (n = 1) Inter quartile range 140 (36,560) 154 (42,385) 0.962b

Texture GLSZM (n = 1) Small Area Emphasis 0.68 ± 0.04 0.70 ± 0.03 0.003a

GLCM (n = 1) Difference variance 14.59 ± 6.63 18.16 ± 8.71 0.024a

Clinical based (n = 3) Smoke – – 0.238c

Mutation – – 0.030c

Outcome – – 0.000c

Fig. 1  A Time-dependent ROC curves of the “gini-index-Logistic regression” model of using the top-10 features at 10 months. B Kaplan Meier 
survival curves of EGFR positive NSCLC patients. The p-values were calculated using the log-rank tests
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Variance)" and the GLSZM-based feature "SAE (Small 
Area Emphasis)" to be significantly associated with pro-
gression (p = 0.003 and p = 0.024). The DV is a measure 
of heterogeneity that places higher weights on differing 
intensity level pairs that deviate more from the mean. The 
lesions on the fast-progression group (DV: 18.16 ± 8.71) 
seemed to be more heterogeneous than the slow-pro-
gression group (DV: 14.59 ± 6.63). While the SAE is a 
measure of the distribution of small size zones [8]. The 
fast-progression group had greater SAE values than the 
slow-progression group (0.70 ± 0.03 vs. 0.68 ± 0.04), 
which was indicative of more smaller size zones and more 
fine textures from the lesion on CT image that might be 
correlated with progression.

Similar to Hong et al. [10] study, we also found that the 
EGFR mutation type was indicative of patient progno-
sis. In addition, we identified complete or partial remis-
sion (CR or PR) within 3 months after EGFR treatment 
as a prognostic factor. This finding was consistent with 
clinical observations and previous studies, e.g., Mizuki 
et  al. [7] claimed that the proportional volume change 
at 8  weeks was related with overall survival in EGFR-
mutant advanced NSCLC patients treated with first-line 
EGFR-TKIs.

In summary, our study screened out an optimal model 
to predict progression-free survival time of NSCLC 
patients treated with first-line EGFR-TKI within a 
machine learning based framework.

Limitations
This study has several limitations need to be addressed. 
First, this was a single institutional study where the 
patient sample size was relatively small. An independ-
ent external validation cohort was lacked to confirm the 
generalization capability of the model and the associated 
findings presented here. Second, we didn’t delve into the 
effect of the number of features on the model. Third, the 
number of the clinical factors studied in the model were 
relatively small. We have observed increased AUC values 
when clinical features were incorporated into the model 
rather than using image texture feature alone. Improved 
model performance might be expected if more clinical or 
pathological factors were embedded.
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