
Akita et al. BMC Research Notes          (2022) 15:139  
https://doi.org/10.1186/s13104-022-06023-1

RESEARCH NOTE

The association between the clinical severity 
of heart failure and docosahexaenoic acid 
accumulation in hypertrophic cardiomyopathy
Keitaro Akita1, Kenji Kikushima2, Takenori Ikoma1, Ariful Islam2, Tomohito Sato2, Taisei Yamamoto2, 
Tomoaki Kahyo2, Mitsutoshi Setou2 and Yuichiro Maekawa1*  

Abstract 

Objective: Hypertrophic cardiomyopathy (HCM) is a common genetic disease with diverse morphology, symptoms, 
and prognosis. Hypertrophied myocardium metabolism has not been explored in detail. We assessed the association 
between myocardium lipid metabolism and clinical severity of heart failure (HF) in HCM using imaging mass spec-
trometry (IMS).

Results: We studied 16 endomyocardial biopsy (EMB) specimens from patients with HCM. Analysis was conducted 
using desorption electrospray ionization IMS. The samples were assigned into two cohorts according to the period 
of heart biopsy (cohort 1, n = 9 and cohort 2, n = 7). In each cohort, samples were divided into two groups according 
to the clinical severity of HF in HCM: clinically severe and clinically mild groups. Signals showing a significant differ-
ence between the two groups were analyzed by volcano plot. In cohort 1, the volcano plot identified four signals; the 
intensity in the clinically severe group was more than twice that of the mild group. Out of the four signals, docosahex-
aenoic acid (DHA) showed significant differences in intensity between the two groups in cohort 2 (10,575.8 ± 2750.3 
vs. 19,839.3 ± 4803.2, P = 0.025). The intensity of DHA was significantly higher in EMB samples from the clinically 
severe HCM group than in those from the mild group.
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Introduction
Hypertrophic cardiomyopathy (HCM) is the most com-
mon genetic cardiomyopathy, with a prevalence of 
approximately 0.2% worldwide [1]. The clinical character-
istics, myocardial morphology, symptoms, and prognosis 
of patients with HCM are highly diverse. Heart failure 
(HF) is one of the major causes of death in patients with 

HCM, and it is challenging to prevent the onset of HF in 
these patients.

In terms of cell metabolism, hypertrophied myocar-
dium requires a large amount of energy, and often pre-
sents with relative myocardial ischemia, irrespective of 
the presence of gene mutations [2, 3]. In HCM with HF, 
metabolic disproportion is likely to occur [4]. This abnor-
mal energy metabolism in HCM has long been clinically 
confirmed by positron emission tomography-computed 
tomography as a hyperglycemic state. In recent years, 
imaging mass spectrometry (IMS) has made it possible to 
analyze energy metabolism at the cellular level in detail 
and in a shorter time. Although the intramyocardial 
lipid metabolism in patients with advanced HF has been 
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described [5], the details regarding the differences in fatty 
acid (FA) metabolism in the hypertrophied myocardium 
of HCM according to the severity of HF are yet to be elu-
cidated. Endomyocardial biopsy (EMB) is not only essen-
tial for monitoring rejection of transplanted hearts but 
is also useful in differentiating primary cardiomyopathy 
from myocarditis and other specific secondary cardiomy-
opathies, and sometimes in diagnosing cardiac tumors. 
As far as we know, there are no reports of myocardial 
metabolism analyzed using EMB samples. IMS enables 
the prompt assessment of energy metabolism, including 
FA metabolism in the myocardium using EMB samples. 
The purpose of this study was to explore the details of FA 
metabolism from HCM cases using IMS.

Main text
Methods
Patients
A total of 16 patients with HCM were enrolled at Hama-
matsu University Hospital from December 2018 to 
June 2020, and 16 endomyocardial biopsy specimens 
were obtained from each patient. We divided the sam-
ples into two groups, namely the clinically severe group 
(eight patients) and clinically mild group (eight patients) 
according to their necessity of invasive therapy includ-
ing implantable cardioverter defibrillator (ICD) or septal 
reduction therapy (SRT). Indication for ICD was deter-
mined by the calculated risk of sudden cardiac death 
(SCD) within 5 years, using the HCM-SCD risk calcula-
tor [6]. Indications for SRT were determined based on 
the ACC/AHA and ESC guidelines [7, 8]. One patient 
who clinically required ICD but declined was assigned to 
the severe group. The participants provided written con-
sent before the study procedures began. The institutional 
review board of Hamamatsu University School of Medi-
cine approved all aspects of this study (application num-
ber 17-261). The study was conducted in accordance with 
the regulations of Declaration of Helsinki.

Endomyocardial biopsy
EMBs were performed in a cardiac catheterization lab-
oratory by a cardiology consultant with expertise in 
the procedure. EMB were most commonly performed 
through a 9 French right femoral venous access sheath 
with the use of a long catheter and a bioptome. A mini-
mum of three specimens were obtained from the right 
ventricular septum. Left ventricular EMB was not per-
formed in any of the cases.

DESI‑IMS
Heart biopsy samples were immediately frozen on dry 
ice, prepared freeze block using the Super Cryoembed-
ding Medium and stored at − 80 °C until sectioning. All 

the specimens were sectioned at 10 μm thickness using a 
cryostat (CM1950, Leica Biosystems, Wetzlar, Germany) 
at − 20 °C on glass slides. Heart biopsy sections were kept 
at room temperature for a while to dry just before IMS 
acquisition.

All the experiments were performed using a desorption 
electrospray ionization (DESI) source attached to a quad-
rupole time-of-flight mass spectrometer (Xevo G2-XS 
Q-TOF, Waters, Milford, MA, USA). The DESI-IMS mass 
spectra were calibrated externally using a 500 µM sodium 
formate solution in 90% 2-propanol, prior to measure-
ment. To obtain the maximum signal intensity from heart 
biopsy samples, DESI parameters were optimized as pre-
viously described [9] with slight modifications. All the 
candidate molecules corresponding to each targeted m/z 
were selected using the Human Metabolome Database 
(https:// hmdb. ca/) based on their mass accuracy and bio-
logical distribution.

Data analysis
The first cohort analysis was performed on the severe 
(n = 4) and the mild (n = 5) group samples. The data were 
evaluated using a single blind method; only the research-
ers were informed of the assignments of each sample, but 
they were blinded to the clinical severity of the samples. 
The signal intensities from the sample area on the IMS 
image of each sample were selected, and the difference in 
the mass spectra between the two groups was analyzed 
using the volcano plot (Microsoft Excel version 2019, 
Microsoft Corp, Redmond, WA, USA). The longitudinal 
axis represents the  log2 of fold changes of the mass inten-
sities of the same m/z between the two groups, and the 
vertical axis represents −  log10 of the P value obtained by 
the t-test between the two groups. We selected the sig-
nals with both P < 0.05 and fold change of ≥ 2, between 
the severe and mild groups. From the IMS images of 
these candidates, we confirmed that these signals were 
obtained from the sample area and were not background 
noises.

Examination of the candidate validity and signal 
identification
The validity of the obtained signals was confirmed using a 
cohort study. The seven samples of cohort 2 were divided 
into the severe (n = 4) and mild (n = 3) groups. The signal 
intensity and distribution of the candidates identified in 
cohort 1 were examined in cohort 2 samples. The vari-
ation of m/z in cohort 1 and 2 measurements was cor-
rected by other common molecules with peaks near the 
candidate’s m/z. Differences with P < 0.05 were consid-
ered significant and signals with P < 0.05, were selected as 
candidates.

https://hmdb.ca/
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Statistical analysis
For patient characteristics, continuous variables are 
expressed as mean ± standard deviation, and categori-
cal data as absolute values and percentages. Independ-
ent continuous variables were compared using Student’s 
t tests, and categorical variables with Pearson’s chi square 
test. All the P values were two-sided. Results were con-
sidered statistically significant at a P < 0.05. Analyses were 
performed using IBM SPSS Statistics version 26 (IBM, 
Armonk, New York, USA).

Results
The patient’s baseline characteristics are shown in 
Table 1. Patients in the severe group had a higher NYHA 
class, higher history of unexplained syncope, higher 
risk of sudden cardiac death in 5 years according to the 
HCM-SCD risk calculator, and greater left ventricular 
mass in cardiac magnetic resonance imaging compared 
with those in the mild group. From the volcano plot of 
cohort 1 samples, nine signals were identified [P < 0.05 
and |log10(fold change) |> 1] (Fig. 1A). Among them, four 
molecules were localized in the biopsy samples in DESI-
IMS, including docosahexaenoic acid (DHA), lysophos-
phatidylethanolamine (18:0), phosphatidylinositol (26:1), 
and phosphatidic acid (42:8) (Fig.  1B). The image and 
mass spectrum of DHA were shown as representative 
data in Fig. 1C and D, respectively. We could confirm the 
signals of these four candidate molecules from cohort 2 
samples (severe group, four patients; mild group, three 
patients). We plotted and compared the signal intensi-
ties of the candidate molecules between the severe and 
mild groups. In both cohorts 1 and 2, the intensities of 
DHA of the severe groups were significantly higher than 
those of the mild groups (Fig.  2A). There were no sig-
nificant differences in the intensities of the other three 
molecules between the two groups (Fig.  2B–D). There 
were no sex differences in the intensities of DHA (female, 
15,753.2 ± 13,547.3; male, 19,008.9 ± 7933.6, P = 0.56).

Discussion
In this study, we compared the myocardial metabolism 
between patients with clinically severe and mild HCM 
using DESI-IMS. We revealed that the myocardium in 
the clinically severe HCM group had significantly higher 
levels of DHA.

Our study is unique because it used the DESI-IMS to 
highlight the details of FA metabolic disorders. To date, 
the following studies have been conducted on this topic: 
one used resected myocardium from patients with severe 
HF in whom heart transplant was indicated [10] and 
the other used resected myocardium from patients with 
hypertrophic obstructive cardiomyopathy in whom septal 

myectomy was indicated [11]. However, only the severe 
cases were examined, and IMS was not used for analysis 
in both studies. Although EMB is an invasive procedure, 
it is a validated method for diagnosing cardiomyopathies 
[7, 12]. EMB can be performed irrespective of the pres-
ence of clinical symptoms and their degree of severity, 
to differentiate even the early or mild phase of other car-
diomyopathies from HCM. Therefore, this study could 
include the mild cases. However, a non-invasive method 
will be required to accurately determine if DHA accumu-
lates in the myocardium or not, especially in asympto-
matic or mildly symptomatic patients with HCM.

Adenosine triphosphate (ATP) production in the myo-
cardium mainly relies on the mitochondrial oxidation of 
FA, carbohydrates, ketone bodies, and amino acids. The 
remaining ATP is produced through aerobic glycolysis [3]. 
In normal hearts, FAs account for the majority of oxidative 
metabolism. However, in hypertrophied hearts, FA oxida-
tion is reduced, and glucose utilization is increased [13]. 
Therefore, it can be assumed that FA pooling is enhanced 
in hypertrophied myocardium. Ranjbarvaziri et  al. 
reported that free FA accumulation in HCM myocardium 
was significantly higher than that in normal myocardium 
[14]. Additionally, they stated that the dysregulation in FA 
metabolism in HCM myocardium may be caused by mito-
chondrial damage and reduced citrate synthase activity 
which was associated with increased reactive oxygen spe-
cies, based on the findings from electron microscopy and 
integrated molecular pathway level analysis. This report 
supports the hypothesis that some free FAs, including 
DHA, are not properly metabolized, and are abnormally 
pooled in the hypertrophied myocardium.

However, the fact that the intensity of DHA was higher 
in the myocardium obtained from the severe HCM group 
shows that DHA could have some implications, rather 
than decreased FA oxidation in hypertrophied hearts.

DHA is an omega-3 polyunsaturated fatty acid 
(PUFA), that has been reported to have several benefi-
cial effects on the human body, such as anti-inflamma-
tory and anti-atherosclerotic effects. Omega-3 PUFAs 
have been reported to have anti-remodeling and anti-
fibrotic effects on the myocardium in mice [15]. DHA in 
particular has been reported to accumulate in cardiac 
tissues compared to other omega-3 PUFAs (regardless 
of supplementation). DHA rather than EPA supplemen-
tation reduces vulnerability to atrial fibrillation [16]. In 
this study, the signal intensity of DHA in the clinically 
severe HCM group was significantly higher than that 
of the clinically mild HCM group, even though all the 
patients did not receive DHA supplementation. Previ-
ous studies reported DHA to have an inhibiting effect 
on phenylephrine-induced cardiac hypertrophy under 
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Table 1 Baseline clinical characteristics of the study population

Mild (N = 8) Severe (N = 8) P

Age (years) 70.5 ± 11.6 56.4 ± 21.8 0.13

Weight (kg) 61.4 ± 11.9 59.0 ± 16.2 0.75

BMI (kg/m2) 25.0 ± 5.0 22.6 ± 4.5 0.34

Female, N (%) 5 (62.5) 3 (37.5) 0.32

NYHA class 0.029
 I 3 (37.5) 0 (0.0)

 II 5 (62.5) 4 (50.0)

 III 0 (0.0) 4 (50.0)

 IV 0 (0.0) 0 (0.0)

History of cardiopulmonary arrest, N (%) 0 (0.0) 0 (0.0)

History of unexplained syncope, N (%) 1 (12.5) 5 (62.5) 0.039
Family history of sudden cardiac death, N (%) 0 (0.0) 1 (12.5) 0.3

Documentation of NSVT, N (%) 1 (12.5) 2 (25.0) 0.5

Risk of sudden cardiac death in 5 years (%) 1.58 ± 1.08 4.31 ± 2.93 0.036
Atrial fibrillation, N (%) 3 (37.5) 1 (12.5) 0.25

Hypertension, N (%) 4 (50.0) 5 (62.5) 0.61

Diabetes, N (%) 1 (12.5) 1 (12.5) 1.0

Dyslipidemia, N (%) 3 (37.5) 2 (25.0) 0.59

Current smoker, N (%) 2 (25.0) 1 (12.5) 0.52

COPD, N (%) 1 (12.5) 0 (0.0) 0.3

Coronary artery disease, N (%) 0 (0.0) 0 (0.0)

Stroke, N (%) 0 (0.0) 0 (0.0)

Malignancy, N (%) 1 (12.5) 1 (12.5) 1.0

Medication, N (%)

 Na channel blocker 1 (12.5) 2 (25.0) 0.52

 Beta-blocker 5 (62.5) 6 (75.0) 0.59

 Calcium channel blocker 5 (62.5) 2 (25.0) 0.13

 ACE inhibitors or ARBs 3 (37.5) 4 (50.0) 0.61

 Anticoagulation 2 (25.0) 1 (12.5) 0.52

 Amiodarone 0 (0.0) 1 (12.5) 0.3

 Metformin 1 (12.5) 0 (0.0) 0.3

 Statin 1 (12.5) 1 (12.5) 1.0

 Fibrate 0 (0.0) 1 (12.5) 0.3

 Ezetimib 0 (0.0) 0 (0.0)

 EPA 0 (0.0) 0 (0.0)

 DHA 0 (0.0) 0 (0.0)

Operations and interventions, N (%)

 Surgical myectomy 0 (0.0) 0 (0.0)

 Alcohol septal ablation 0 (0.0) 5 (62.5) 0.007
 AF ablation 2 (25.0) 0 (0.0) 0.13

 ICD implantation 0 (0.0) 2 (25.0) 0.13

Vital signs

 Systolic blood pressure (mmHg) 121.0 ± 11.7 121.4 ± 11.9 0.95

 Diastolic blood pressure (mmHg) 73.8 ± 13.3 66.2 ± 7.4 0.19

 Heart rate (bpm) 59.0 ± 8.4 66.1 ± 6.4 0.077

Laboratory data

 NT-proBNP (pg/mL) 477.4 ± 471.7 1482 ± 1497 0.092

 Troponin T (ng/mL) 0.0129 ± 0.008 0.0254 ± 0.022 0.15

 CRP (mg/dL) 0.13 ± 0.11 0.07 ± 0.04 0.24
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in-vitro situations [17, 18]. However, another report 
from an in-vivo animal investigation documented the 
serum DHA concentration in HCM was not higher 
than the control [19]. Integrating these results, DHA 
itself has cardioprotective effects; however, its utili-
zation might be dysregulated under the condition of 
severe HCM with mitochondrial damage.

Although the precise mechanism of upregulation 
of DHA in severe HCM myocardium is unknown, 
we could hypothesize that higher oxidative stress in 
severely hypertrophied myocardium induces the accu-
mulation of DHA.

From the analysis using DESI-IMS, the intensity of 
DHA was significantly higher in the EMB samples 

from the clinically severe HCM group than in those 
from the mild HCM group. DHA may play an impor-
tant role in the pathophysiology of worsening HF in 
patients with HCM.

Limitations
To prove this hypothesis, further research is needed to 
reveal the cascade that is upgrading these FAs in severe 
HCM myocardium. Verification studies with larger 
samples sizes are also required. However, this study 
suggests the possibility of identifying the metabolism 
of patients with severe HCM using a novel method and 
reveals the pathophysiology of worsening HF in HCM 
hearts.

Bold values denote statistical significance at the P < 0.05.

Data are expressed as mean ± SD and number (%)

BMI body mass index; NYHA New York Heart Association; NSVT non-sustained ventricular tachycardia; COPD chronic obstructive pulmonary disease; ACE angiotensin-
converting enzyme; ARB angiotensin receptor blocker; EPA eicosapentaenoic acid; DHA docosahexaenoic acid; AF atrial fibrillation; ICD implantable cardioverter 
defibrillator; NT-proBNP n-terminal pro-brain natriuretic peptide; CRP C-reactive protein; eGFR estimated glomerular filtration rate; LV left ventricle; LAD left atrial 
diameter; LAVI left atrial volume index; LVOT-PG left ventricular outflow tract-pressure gradient; MRI magnetic resonance imaging; LGE late gadolinium enhancement

Table 1 (continued)

Mild (N = 8) Severe (N = 8) P

 Hemoglobin (g/dL) 12.7 ± 1.7 13.3 ± 2.4 0.60

 Creatinine (mg/dL) 0.90 ± 0.21 0.83 ± 0.31 0.80

 eGFR (mL/min/1.73  m2) 57.1 ± 15.6 65.8 ± 29.0 0.47

 HbA1c (%) 5.9 ± 0.6 5.6 ± 0.4 0.34

 LDL-C (mg/dL) 106.3 ± 22.8 99.1 ± 19.2 0.51

 Dihomo-gamma-linolenic acid (µg/mL) 38.2 ± 12.0 41.2 ± 13.8 0.67

 Arachidonic acid (AA) (µg/mL) 201.4 ± 33.0 197.0 ± 55.0 0.86

 EPA (µg/mL) 73.4 ± 52.7 46.8 ± 20.5 0.21

 DHA (µg/mL) 115.0 ± 46.9 127.3 ± 39.6 0.59

 EPA/AA ratio 0.39 ± 0.28 0.24 ± 0.09 0.22

 DHA/AA ratio 0.60 ± 0.32 0.66 ± 0.21 0.66

Echocardiographic variables

 Maximum LV wall thickness (mm) 17.3 ± 4.6 19.4 ± 2.4 0.28

 LVEF (%) 72.0 ± 7.1 70.2 ± 4.7 0.56

 LAD (mm) 41.0 ± 7.3 38.4 ± 2.5 0.37

 LAVI (mL/m2) 53.5 ± 20.5 46.1 ± 5.5 0.39

 E/A 0.73 ± 0.18 0.84 ± 0.53 0.58

 E/e’ 17.3 ± 5.2 16.4 ± 7.4 0.79

 LVOT-PG (mmHg) 32.3 ± 43.4 59.8 ± 37.5 0.20

MRI variables

 LV mass (g) 112.5 ± 39.5 166.6 ± 40.4 0.017
 Apical aneurysm, N (%) 1 (12.5) 2 (25.0) 0.52

 LGE, N (%) 3 (37.5) 4 (50.0) 0.61
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