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RESEARCH NOTE

Linear B‑spline finite element method 
for the generalized diffusion equation 
with delay
Gemeda Tolessa Lubo1*    and Gemechis File Duressa2    

Abstract 

Objectives:  The main aim of this paper is to develop a linear B-spline finite element method for solving generalized 
diffusion equations with delay. The linear B-spline basis function is used to discretize the space variable. The time 
discretization process is based on Crank-Nicolson. The benefit of the scheme is that the numerical solution is obtained 
as a smooth piecewise continuous function which empowers one to find an approximate solution at any desired 
position in the domain.

Result:  Sufficient and necessary conditions for the numerical method to be asymptotically stable are derived. The 
convergence of the numerical method is studied. Some numerical experiments are performed to verify the applicabil-
ity of the numerical method.
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Introduction
In this paper, we consider a class of the generalized delay 
diffusion equation of the form

with a1, a2 ∈ R are real numbers and τ > 0 is a delay con-
stant. The delay diffusion equation has several applica-
tions in science and engineering [1–5]. The generalized 
delay diffusion equation has intrinsic complex nature 
because its exact solutions are difficult to obtain. There-
fore, one has to mostly rely on numerical treatments. 
Jackiewicz and Zubik-Kowal [6] used spectral colloca-
tion and waveform relaxation methods to investigate 

(1)







∂u(x,t)
∂t = a1

∂2u(x,t)
∂x2

+ a2
∂2u(x,t−τ)

∂x2
, t > 0, 0 < x < π ,

u(x, t) = ψ (x, t), − τ ≤ t ≤ 0, 0 ≤ x ≤ π ,
u(0, t) = u(π , t) = 0, t > 0,

nonlinear partial differential equations with delay. Chen 
and Wang [7] used the variational iteration method to 
study a neutral functional differential equation with 
delays. The numerical treatments of the generalized delay 
diffusion equations were studied by many authors(see for 
instance [8–11]). Test equation of the type Eq. (1) is also 
considered in [12, 13]. In these works, the authors applied 
the separation of the variables to solve analytically.

The finite element method (FEM) is a well-estab-
lished numerical method for solving partial differential 
equations (PDEs). The method approximates the exact 
solution by using piecewise polynomials or B-spline 
basis functions. B-splines as finite element basis func-
tions provide the required continuity and smooth-
ness. The use of various degrees of B-spline functions 
to obtain the numerical solutions of some PDEs has 
been shown to provide easy and simple algorithms. 
For instance, B-spline finite elements have been widely 
applied to solve elliptic equations [14, 15], Korteweg-
De Vries equation [16–18], Burgers’ equation [19–22], 
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regularized long-wave equation [23, 24], Fokker-Planck 
equation [25], advection-diffusion equation [26], and 
generalized equal width wave equation [27], etc., suc-
cessfully. However, to the best knowledge of the authors, 
the B-spline FEM method is not considered for finding 
the approximate solution of the diffusion equation with 
delay. In this paper, we have applied a linear B-spline 
FEM to find numerical solutions to the problem under 
consideration.

Notations  Let Hr = Hr(�) = Wr
2
(�) denotes the 

Sobolev spaces of order r with respective to norm ‖.‖r 
defined as

and

�ν� = �ν�L2 :=

(∫

�

ν(x)2dx

)

1
2

Applying Green’s formula to the second and third terms 
of equation (1) we obtain

Define the space

where P1 is the space of all polynomials degree less or 
equal to 1.

We can find the approximate solution uh(t) := uh(., t) 
belonging to Sh for each t, so that

where ψh(., t) is an approximation of ψ(., t) in Sh.
Let �t = τ/m be a given step size with m ≥ 1 , the grid 

points tn = n�t(n = 0, 1, . . . ) and Un be the approxima-
tion in Sh of u(t) at t = tn = n�t.

Application of Galerkin Crank-Nicloson method to Eq. 
(4) gives a numerical scheme of the following type

where Un(.) = ψ(., tn) for −m ≤ n ≤ 0.
Let

Substituting Eq. (6) into Eq. (5) and choosing 
ζ = Qi, i = 0, . . . ,N − 1 , we get

(2)
Qj(x) =











x−xj−1

xj−xj−1
, x ∈ [xj−1, xj]

xj+1−x

xj+1−xj
, x ∈ [xj , xj+1]

0, x /∈ [xj−1, xj+1]

j = 1, 2, . . . ,N − 1.

(3)

(ut(x, t), ν)+ a1(∇u(x, t),∇ν)

+ a2(∇u(x, t − τ ),∇ν)

= 0, ∀ν ∈ H
1
0 (�), t > 0.

Sh ={ζ : ζ ∈ C
2([0,π ]), ζ |[xn−1,xn] ∈ P

1
,

1 ≤ n ≤ N , ζ(0) = ζ(π) = 0},

(4)
{

(uh,t(t, ζ ))+ a1(∇uh(t),∇ζ )+ a2(∇uh(t − τ ),∇ζ ) = 0, ∀ζ ∈ Sh, t > 0,
uh(x, t) = ψh(x, t) = 0, t > 0,

(5)

(

Un − Un−1

�t
, ζ

)

+ a1

(

∇Un + ∇Un−1

2
,∇ζ

)

+ a2

(

∇Un−m + ∇Un−m−1

2
,∇ζ

)

= 0,

(6)Un(x) :=

N−1
∑

j=1

Qj(x)α
n
j .

1

�t

N−1
∑

j=1

(αn
j − αn−1

j )(Qi(x),Qj(x))

= −
a1

2

N−1
∑

j=1

(αn
j + αn−1

j )(∇Qi(x),∇Qj(x))

Let ν(x),w(x)(x ∈ �) be real valued functions.

Assumption  Assume

u(t) := u(., t),ut(t) := ut(., t),utt(t)

:= utt(., t),uttt(t) := uttt(., t),ψ(t) := ψ (., t)
 , and 

ψt(t) := ψt(., t).

Main text

Description of the method
Let �t = τ/m be a step size with m ≥ 1 , the grid points 
tn = n�t(n = 0, 1, . . . ) and be the approximation in Sh 
of u(t) at t = tn = n�t . We partition the x -axis into N 
finite element by choosing a set of equally-spaced knots 
{xk}

N
k=0 such at 0 = x0 < x1 < . . . xN−1 < xN = π and 

xi+1 − xi = h, i = 0, 1, 2, . . . ,N − 1.
The linear B-spline basis functions is chosen as follows:

�ν�r = �ν�Hr :=

(

∑

i≤r

∥

∥

∥

∥

∂ iν(x)

∂xi

∥

∥

∥

∥

2) 1
2

.

(ν(x),w(x)) :=

∫

�

ν(x)w(x)dx,

(∇ν(x),∇w(x)) :=

∫

�

∂ν(x)

∂x

∂w(x)

∂x
dx.
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which can be rewritten as

Define the following matrices:

The (N − 1)× (N − 1) matrices A and B are given as 
follows

with γ n = ψ(tn) an initial approximation and 
αn := (α1, . . . ,αN )

T , and B+ 1
2a1�tA is positive definite 

and hence, in particular, invertible. Therefore, it has a 
unique solution.

Stability analysis

Definition 1  If the solution Un of Eq. (5) correspond-
ing to any sufficiently differentiable function ψh(x, t) with 
ψh(0, t) = ψh(π , t) satisfies

(7)−
a2

2

N−1
∑

j=1

(αn−m
j + αn−m−1

j )(∇Qi(x),∇Qj(x)),

(8)

1

�t

N−1
∑

j=1

(αn
j − αn−1

j )

∫ π

0

Qi(x)Qj(x)dx = −
a1

2

N−1
∑

j=1

(αn
j + αn−1

j )

∫ π

0

Q′
i(x)Q

′
j(x)dx

−
a2

2

N−1
∑

j=1

(αn−m
j + αn−m−1

j )

∫ π

0

Q′
i(x)Q

′
j(x)dx.

(9)A = (ai,j)
N−1
i,j=1

=

∫ π

0

Q′
i(x)Q

′
j(x)dx,

(10)B = (bi,j)
N−1
i,j=1 =

∫ π

0
Qi(x)Qj(x)dx.

(11)

A =
1

h

















2 − 1 0 . . . 0 0
−1 2 − 1 . . . 0 0
0 − 1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 − 1
0 0 0 . . . − 1 2

















B =
h

6

















4 1 0 . . . 0 0
1 4 1 . . . 0 0
0 1 4 . . . 0 0
...
...
...

. . .
...
...

0 0 0 . . . 4 1
0 0 0 . . . 1 4

















�

(B+ 1
2a1�tA)αn = (B− 1

2a1�tA)αn−1 − 1
2a2�tA(αn−m + αn−m−1),

αn = γ n, for −m ≤ n ≤ 0.

then the zero solution of Eq. (5) is called asymptotically 
stable.

Let K := [xi, xi+1] be an element the finite element, and 
K̃ := [−1, 1] be the reference element in η -plane. Then

(12)lim
n→∞

Un = 0, x ∈ [0, 1],

∫

K
Q̃iQ̃jdx =

h

2

∫

K̃

˜̃
Qi

˜̃
Qjdη,

∫

K
∇Q̃i∇Q̃jdx

=
2

h

∫

K̃
∇

˜̃
Qi∇

˜̃
Qjdη,

where B̃ =
∫

K̃
˜̃
Qi

˜̃
Qjdη and Ã =

∫

K̃ ∇
˜̃
Qi∇

˜̃
Qjdη.

From Eq. (8),

(13)

αn =

(

h

2
B̃+

a1�t

h
Ã

)−1(
h

2
B̃−

a1�t

h
Ã

)

αn−1

−
a2�t

h

(

h

2
B̃+

a1�t

h
Ã

)−1

Ã(αn−m + αn−m−1)



Page 4 of 9Lubo and Duressa ﻿BMC Research Notes          (2022) 15:195 

Let αn = γ nC1 , where C1 is a constant vector. The charac-
teristic of Eq. (14) is:

where γB̃−1Ã denotes the corresponding eigenvalue of 
B̃−1Ã.

Lemma 1  [28] Let κm(z) = α(z)zm − β(z) be a polyno-
mial, with α(z) and β(z) are polynomials of zero degree. 
Then κm(z) is a Schur polynomial for m ≥ 1 if and only if 
the following conditions hold 

	(i)	 α(z) = 0 ⇒ |z| < 1,

	(ii)	 |β(z)| ≤ |α(z)|, ∀z ∈ C, |z| = 1, and
	(iii)	 κm(z)  = 0, ∀z ∈ C, |z| = 1.

Theorem  1  Suppose that 0 ≤ a2 < a1 . Then the zero 
solution of the B-spline finite element method is delay-
independently asymptotically stable.

Proof

Let α(γ ) = γ −
1−

2a1�t

h2
γ
B̃−1 Ã

1+
2a1�t

h2
γ
B̃−1 Ã

 and β(γ ) =
2a2�t

h2
γ
B̃−1Ã

1+
2a1�t

h2
γ
B̃−1Ã

(γ + 1).

(i) If α(γ ) = 0 , then |γ | =

∣

∣

∣

∣

∣

1−
2a1�t

h2
γ
B̃−1Ã

1+
2a1�t

h2
γ
B̃−1Ã

∣

∣

∣

∣

∣

< 1.

(ii) For ∀γ ∈ C , |γ | = 1 , represent γ = cos ̺ + i sin  ̺, 
then we get

We obtain

(14)

αn =

(

I +
2a1�t

h2
B̃
−1

Ã

)−1

(

I −
2a1�t

h2
B̃
−1

Ã

)

αn−1

−
2a2�t

h2

(

I +
2a1�t

h2
B̃
−1

Ã

)−1

B̃
−1

Ã(αn−m + αn−m−1).

(15)γm −

(

1− 2a1�t
h2

�B̃−1Ã

1+ 2a1�t
h2

�B̃−1Ã

)

γm−1 −

( 2a2�t
h2

�B̃−1Ã

1+ 2a1�t
h2

�B̃−1Ã

)

(γ + 1) = 0,

γ − 1

γ + 1
=

cos ̺ − 1+ i sin ̺

cos ̺ + 1+ i sin ̺
=

2i sin ̺

2+ 2 cos ̺
.

(iii) By (ii), it is straightforward.� �

Convergence Analysis
In this section, we present the convergence analysis for 
the proposed method.

The Ritz projection Rh : H1
0
(�) → Sh is a mapping for 

any ν ∈ H1
0 (�) such that

Lemma 2  Assume that for any v ∈ Hs(�) ∩H1
0 (�),

holds. Then, with Rh defined by Eq. (16), we have

The number r is referred to as the order of accuracy of 
the family {Sh} . For the case of piecewise linear B-spline 
basis function, r = 2.

Define u(t) := u(., t) and u : [0,+∞) → H1
0
(�) . Let 

Dh : H1
0
(�) → Sh by

and

∣

∣

∣

∣

α(γ )

γ + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ −
1−

2a1�t

h2
γ
B̃−1Ã

1+
2a1�t

h2
γ
B̃−1Ã

γ + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(γ − 1)

(γ + 1)(1+ 2a1�t

h2
γ
B̃−1Ã

)
+

2a1�t

h2
γ
B̃−1Ã

1+ 2a1�t

h2
γ
B̃−1Ã

∣

∣

∣

∣

∣

≥

2a1�t

h2
γ
B̃−1Ã

1+ 2a1�t

h2
γ
B̃−1Ã

>

2a2�t

h2
γ
B̃−1Ã

1+ 2a1�t

h2
γ
B̃−1Ã

=

∣

∣

∣

∣

β(γ )

γ + 1

∣

∣

∣

∣

.

(16)(∇Rhν − ν,∇w) = 0, ∀w ∈ Sh.

inf
ζ∈Sh

{�ν − ζ� + h�∇(ν − ζ )�} ≤ Chs�ν�s, for 1 ≤ s ≤ r.

�Rhν − ν� + h�∇(Rhν − ν)� ≤ Chs�ν�s,

for any ν ∈ Hs(�) ∩H1
0 (�), 1 ≤ s ≤ r.

(17)
a1(∇Dhu(t)−∇u(t),∇ζ )+ a2(∇Dhu(t − τ )

−∇u(t − τ ),∇ζ ) = 0, ∀ζ ∈ Sh

(18)Dhu(t) = Rhu(t) = Rhψ(t), for − τ ≤ t ≤ 0.
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Theorem 2  Let u and Un be the solution of (3) and (5), 
respectively. Assume that �u(t)− Rhu(t)� ≤ Ch2�u(t)�2 , 
�ut(t)− Rhut(t)� ≤ Ch2�ut(t)�2 , −τ ≤ t ≤ 0 and ‖ψh(t)

−ψ(t)� ≤ Ch2 , then

where C is a positive constant independent of h and �t.

Proof
Define

where

µn = Un − Dhu(tn) , σ n = Dhu(tn)− u(tn) , so that

The term σ n(t) = σ(tn) is easily bounded by lemma 2.

where

∥

∥Un − u(tn)
∥

∥ ≤ C(h2 + (�t)2), for n = 1, 2, ...

e
n =U

n − u(tn) = (Un − Dhu(tn))

+ (Dhu(tn)− u(tn)) = µn + σ n
,

∥

∥Un − u(tn)
∥

∥ ≤
∥

∥µn
∥

∥+
∥

∥σ n
∥

∥.

(19)

(

µn − µn−1

�t
, ζ

)

+ a1

(

∇µn + ∇µn−1

2
,∇ζ

)

+ a2

(

∇µn−m + ∇µn−m−1

2
,∇ζ

)

= −(Wn
, ζ ), ∀ζ ∈ Sh,

W
n =

Dhu(tn)− Dhu(tn−1)

�t
−

ut(tn)+ ut(tn−1)

2

=(Dh − I)∂̄u(tn)+

(

∂̄u(tn)−
ut(tn)+ ut(tn−1)

2

)

=: Wn
1 +W

n
2 .

Setting ζ =
µn+µn−1

2
 , gives

By applying Schwartz inequality,

So

We can assume that n ∈ ((k − 1)m, km], k ∈ N  . Then

(

µn − µn−1

�t
,
µn + µn−1

2

)

+ a1

∥

∥

∥

∥

µn + µn−1

2

∥

∥

∥

∥

2

1

+ a2

(

∇µn−m + ∇µn−m−1

2
,
∇µn + ∇µn−1

2

)

= −

(

W
n
,
µn + µn−1

2

)

.

(

µn − µn−1

�t
,
µn + µn−1

2

)

+

∥

∥

∥

∥

µn + µn−1

2

∥

∥

∥

∥

2

1

≤ C

(∥

∥

∥

∥

µn−m + µn−m−1

2

∥

∥

∥

∥

2

1

+
∥

∥W
n
∥

∥

∥

∥

∥

∥

µn + µn−1

2

∥

∥

∥

∥

)

.

∥

∥µn
∥

∥

2
+�t

∥

∥

∥

∥

µn + µn−1

2

∥

∥

∥

∥

2

1

≤ C

(

∥

∥

∥µ
n−1

∥

∥

∥

2

+�t

∥

∥

∥

∥

µn−m + µn−m−1

2

∥

∥

∥

∥

2

1

+ (�t)2
∥

∥W
n
∥

∥

2

)

.

�t

∥

∥

∥

∥

µn + µn−1

2

∥

∥

∥

∥

2

1

≤ C

(

∥

∥

∥µ
n−1

∥

∥

∥

2
+�t

∥

∥

∥

∥

µn−m + µn−m−1

2

∥

∥

∥

∥

2

1

+ (�t)2
∥

∥Wn
∥

∥

2
)

≤ C

(

∥

∥

∥µ
n−1

∥

∥

∥

2
+

∥

∥

∥µ
n−m−1

∥

∥

∥

2
+�t

∥

∥

∥

∥

µn−2m + µn−2m−1

2

∥

∥

∥

∥

2

1

+ (�t)2(
∥

∥Wn
∥

∥

2
+

∥

∥Wn−m
∥

∥

2
)

)

≤ ... ≤ C

( k−1
∑

i=0

∥

∥

∥µ
n−im−1

∥

∥

∥

2
+�t

∥

∥

∥

∥

∥

µn−km + µn−km−1

2

∥

∥

∥

∥

∥

2

1

+ (�t)2
k−1
∑

i=0

∥

∥

∥Wn−im
∥

∥

∥

2
)

.
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Therefore

By applying Gronwall inequality,

Write

so

Further

so that

From Eq. (21) and Eq. (22), we have

� �

∥

∥µn
∥

∥

2

≤ C

( k−1
∑

i=0

∥

∥

∥
µn−im−1

∥

∥

∥

2

+�t

∥

∥

∥

∥

∥

µn−km + µn−km−1

2

∥

∥

∥

∥

∥

2

1

+ (�t)2
k−1
∑

i=0

∥

∥

∥W
n−im

∥

∥

∥

2
)

.

(20)

∥

∥µn
∥

∥

2
≤ C

(

∥

∥

∥
µ0

∥

∥

∥

2

+�t

∥

∥

∥

∥

∥

µn−km + µn−km−1

2

∥

∥

∥

∥

∥

2

1

+ (�t)2
k−1
∑

i=0

∥

∥

∥W
n−im

∥

∥

∥

2
)

.

Wn
1 = (Dh − I)∂̃u(tn) = �t−1

∫ tn

tn−1

(Dh − I)ut(t)dt,

(21)

(�t)2
k−1
∑

i=1

∥

∥

∥W
n−im

1

∥

∥

∥

2

≤

k−1
∑

i=1

(∫

tn−im

tn−im−1

Ch
2�ut(t)�2dt

)2

≤ Ch
2(2)

.

∥

∥

∥�tW
i
2

∥

∥

∥ =

∥

∥

∥

∥

u(ti)− u(ti−1)−�t
ut(ti)+ ut(ti−1)

2

∥

∥

∥

∥

≤ C(�t)2
∫

ti

ti−1

�uttt(t)�dt,

(22)

(�t)2
k−1
∑

i=1

∥

∥

∥W
n−im

2

∥

∥

∥

2

≤ C(�t)4
k−1
∑

i=1

(∫

tn−im

tn−im−1

�uttt(S)�dt

)2

≤ C(�t)4.

∥

∥Un − u(tn)
∥

∥ ≤ C(h2 + (�t)2), for n = 1, 2, . . .

Numerical experiments
The performance of the proposed methods is tested by 
using numerical experiments. To evaluate errors, L∞ and 
L2 error norms are applied as follows:

Order of convergence is obtained by

where Eh1 and Eh2 represent the errors at step sizes h1 and 
h2 , respectively.

Example 1

[29] Consider

First, we take the initial function as 
ψ(x, t) = sin(x), τ = 1, a1 = 1.5, a2 = 1 such that the 
trivial solution of Eq.(1) is asymptotically stable. Numeri-
cal results are obtained and plotted at time T = 5 using 
different (�t = τ/m,h = π/N).

We apply the proposed method with different step 
sizes to solve the problem. The graph of numerical results 
is shown in Fig. 1. This graph shows that the numerical 
solution is asymptotically stable. And these confirm the 
theoretical results in Theorem 1.

Example 2

[30] Consider

with the initial condition we take the initial function 
as ψ(x, t) = sin(x) , and the added term h(x, t) where that 
is the exact solution is u(x, t) = exp(−t)sin(x) . Here, we 
take the parameters a1 = 1, a2 = 0.5, τ = 0.5 and com-
pute the problem on [0,π ] × [0, 2] for different space and 
temporal step sizes (�x = π/N ,�t = τ/m).

Table  1 shows the numerical errors and the correspond-
ing orders. When the grid size is reduced, both error 

L∞ = max
1≤n≤N

∣

∣u(tn)− (Un)
∣

∣, L2 =

√

√

√

√h

N
∑

i=1

|u(tn)− (Un)|2

Order =
log(Eh1/Eh2)

log(h1/h2)

(23)







∂u(x,t)
∂t = a1

∂2u(x,t)
∂x2

+ a2
∂2u(x,t−τ)

∂x2
, t > 0, 0 < x < π ,

u(x, t) = ψ (x, t), − τ ≤ t ≤ 0, 0 ≤ x ≤ π ,
u(0, t) = u(π , t) = 0, t > 0.

(24)











∂u(x,t)
∂t

= a1
∂2u(x,t)

∂x2
+ a2

∂2u(x,t−τ )

∂x2
+ h(x, t), t > 0, 0 < x < π ,

u(x, t) = ψ (x, t), − τ ≤ t ≤ 0, 0 ≤ x ≤ π ,

u(0, t) = u(π , t) = 0, t > 0,



Page 7 of 9Lubo and Duressa ﻿BMC Research Notes          (2022) 15:195 	

0
1

2
3

4
5

0
1

2
3

4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

t −axisx −axis

U

(a)

0
1

2
3

4
5

0
1

2
3

4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

t −axisx −axis

U

(b)

0
1

2
3

4
5

0
1

2
3

4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

t −axisx −axis

U

(c)

0
1

2
3

4
5

0
1

2
3

4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

t −axisx −axis

U

(d)
Fig. 1  Solution of (23) with parameter values a) N = 10 and m = 40 . b) N = 10 and m = 50 . c) N = 10 and m = 200 . d) N = 10 and m = 500

Table 1  Errors norms and the corresponding convergence orders ( �t ≈ �x
2 ) for example 2

N Central finite difference method ( θ = 1 ) [30] Linear B-spline FEM

L2 Order L∞ Order L2 Order L∞ Order

5 5.41E−02 – 4.10E−02 – 2.52E−02 – 2.45E−02 –

10 1.34E−03 2.00 1.07E−02 2.07 4.77E−03 2.40 4.70E−03 2.38

20 3.25E−03 2.04 2.59E−03 2.02 1.14E−03 2.06 1.12E−03 2.07

40 8.10E−04 2.00 6.46E−04 2.00 2.83E−04 2.01 2.76E−04 2.02

80 2.02E−04 2.00 1.61E−04 2.00 7.06E−05 2.00 6.89E−05 2.00
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Table 2  Comparison of the numerical solutions obtained with 
various values of m for N = 10, T = 1 , and τ = 0.5 with the exact 
solution for example 2

x Numerical solutions Exact solution

m =10 m =20 m =40 m =80

0.1π 0.187408 0.187423 0.187427 0.187427 0.187428

0.2π 0.356472 0.356500 0.356507 0.356509 0.356509

0.3π 0.490642 0.490680 0.490690 0.490692 0.490693

0.4π 0.576784 0.576829 0.576841 0.576843 0.576844

0.5π 0.606467 0.606514 0.606526 0.606529 0.606530

0.6π 0.576784 0.576829 0.576841 0.576843 0.576844

0.7π 0.490642 0.490680 0.490690 0.490692 0.490693

0.8π 0.356472 0.356500 0.356507 0.356509 0.356509

0.9π 0.187408 0.187423 0.187427 0.187427 0.187428

norms are significantly reduced. These results show the 
convergence of the linear B-spline finite element method. 
The given results suggest that the proposed method has 
order 2 of accuracy. The calculated error norms are also 
compared with the result obtained using the central differ-
ence method [30]. In Table  2, the comparison between the 
exact and approximation solution are given.

Conclusion
In this paper, a finite element method is constructed 
based on linear B-spline basis functions for solving the 
generalized diffusion equations with delay. The detailed 
description of results through tables and graphs proves 
that the proposed numerical method is working effi-
ciently. For all the test cases, simulations at a different set 
of data points are carried out to check the applicability of 
the numerical scheme. Based on these observations, our 
expectation that the given method is well suited to the 
generalized diffusion with the delay is confirmed.

Limitations
The linear B-spline basis functions yields an order 2 of 
accuracy. One can use higher polynomial basis functions 
in order to increase the order of accuracy in space.
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