Skip to main content

Table 2 Summary statistics for the simulation studies for the two-component LC mixture model under different scenarios (\(\sigma =0.5,1,\) and 2) and two sample sizes (n = 250 and 500)

From: A joint latent class model for classifying severely hemorrhaging trauma patients

Scenario Parameter True n = 250 n = 500
Est SSE ASE MSE Est SSE ASE MSE
\(\sigma =0.5\) \(\alpha _0\) 0.5 0.514 0.201 0.201 0.040 0.502 0.139 0.133 0.017
\(\alpha _1\) 1.0 1.027 0.232 0.226 0.052 1.009 0.157 0.155 0.024
\(\beta _0^{(1)}\) 2.708 2.708 0.071 0.073 0.005 2.710 0.050 0.050 0.002
\(\beta _1^{(1)}\) −1.0 −1.002 0.055 0.054 0.003 −1.002 0.038 0.037 0.001
\(\beta _2^{(1)}\) 1.0 0.998 0.101 0.105 0.011 0.995 0.071 0.071 0.005
\(\beta _0^{(2)}\) 1.609 1.605 0.141 0.133 0.017 1.610 0.096 0.094 0.009
\(\beta _1^{(2)}\) 1.0 1.001 0.094 0.090 0.008 1.001 0.062 0.062 0.004
\(\beta _2^{(2)}\) −1.0 −1.001 0.156 0.151 0.022 −0.999 0.108 0.108 0.012
\(\gamma _0^{(1)}\) 1.0 1.011 0.325 0.322 0.104 1.008 0.225 0.215 0.046
\(\gamma _1^{(1)}\) −1.0 −1.005 0.405 0.398 0.158 −1.012 0.281 0.270 0.073
\(\gamma _0^{(2)}\) −1.0 −1.015 0.389 0.388 0.150 −1.024 0.268 0.261 0.068
\(\gamma _1^{(2)}\) 1.0 1.010 0.500 0.487 0.237 1.034 0.345 0.330 0.110
\(\log (\sigma )\) −0.693 −0.718 0.032 0.063 0.005 −0.703 0.022 0.044 0.002
\(\sigma =1\) \(\alpha _0\) 0.5 0.522 0.272 0.267 0.072 0.507 0.187 0.185 0.034
\(\alpha _1\) 1.0 1.034 0.281 0.283 0.079 1.009 0.190 0.183 0.034
\(\beta _0^{(1)}\) 2.708 2.709 0.149 0.153 0.023 2.706 0.104 0.104 0.011
\(\beta _1^{(1)}\) −1.0 −1.006 0.112 0.113 0.012 −0.998 0.077 0.077 0.006
\(\beta _2^{(1)}\) 1.0 1.001 0.206 0.203 0.043 1.003 0.147 0.145 0.021
\(\beta _0^{(2)}\) 1.609 1.577 0.276 0.277 0.078 1.601 0.188 0.194 0.037
\(\beta _1^{(2)}\) 1.0 0.986 0.185 0.182 0.033 1.002 0.124 0.121 0.014
\(\beta _2^{(2)}\) −1.0 −0.980 0.298 0.301 0.091 −0.995 0.206 0.213 0.045
\(\gamma _0^{(1)}\) 1.0 1.005 0.366 0.348 0.121 1.005 0.253 0.251 0.063
\(\gamma _1^{(1)}\) −1.0 −1.003 0.443 0.415 0.172 −1.003 0.307 0.298 0.089
\(\gamma _0^{(2)}\) −1.0 −1.014 0.44 0.427 0.182 −1.012 0.308 0.310 0.096
\(\gamma _1^{(2)}\) 1.0 1.016 0.558 0.516 0.266 1.021 0.385 0.400 0.160
\(\log (\sigma )\) 0.0 −0.027 0.065 0.065 0.005 −0.012 0.045 0.042 0.002
\(\sigma =2\) \(\alpha _0\) 0.5 0.568 0.505 0.538 0.294 0.524 0.372 0.388 0.151
\(\alpha _1\) 1.0 1.108 0.406 0.431 0.198 1.046 0.278 0.289 0.085
\(\beta _0^{(1)}\) 2.708 2.749 0.336 0.350 0.124 2.717 0.239 0.240 0.057
\(\beta _1^{(1)}\) −1.0 −1.051 0.262 0.266 0.073 −1.023 0.188 0.193 0.037
\(\beta _2^{(1)}\) 1.0 1.020 0.436 0.450 0.203 0.996 0.311 0.322 0.104
\(\beta _0^{(2)}\) 1.609 1.520 0.599 0.698 0.496 1.576 0.409 0.438 0.192
\(\beta _1^{(2)}\) 1.0 0.951 0.406 0.453 0.207 0.971 0.271 0.284 0.081
\(\beta _2^{(2)}\) −1.0 −1.036 0.596 0.615 0.380 −1.008 0.418 0.422 0.178
\(\gamma _0^{(1)}\) 1.0 1.001 0.483 0.458 0.209 1.017 0.345 0.313 0.098
\(\gamma _1^{(1)}\) −1.0 −1.014 0.564 0.532 0.284 −1.023 0.397 0.359 0.129
\(\gamma _0^{(2)}\) −1.0 −0.955 0.565 0.533 0.286 −1.002 0.404 0.395 0.156
\(\gamma _1^{(2)}\) 1.0 0.962 0.686 0.652 0.427 1.004 0.484 0.476 0.227
\(\log (\sigma )\) 0.693 0.652 0.130 0.067 0.006 0.674 0.092 0.047 0.003
  1. SSE sample standard errors, ASE average of estimated standard errors, MSE mean squared error