Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of classical lesions in different brain regions of the neocortex and hippocampus [1]. Among these lesions, the amyloid plaques formed by the aggregation of amyloid-β (Aβ) peptides are prominent. The pathogenesis of the disease is complex and is driven by both environmental and genetic factors. Although most of the cases are sporadic with an obscure etiology, some forms of the disease are inherited and several genes are implicated in familial Alzheimer's disease (FAD). The understanding of the molecular basis of the disease gained significant knowledge with the observation that mutations in the three genes linked to early-onset autosomal dominant FAD, increase the production of a highly insoluble isoform of Aβ. Together, these observations support the so-called amyloid hypothesis in the pathogenesis of Alzheimer's disease [2, 3]. Sequential endoproteolysis of the amyloid-β precursor protein (APP) by the aspartic protease β-secretase/BACE1 and by the γ-secretase proteolytic complex leads to the production of Aβ (see Figure 1A). In an alternative non-amyloidogenic pathway, APP is endoproteolyzed within the Aβ region by α-secretase to produce the secreted sAPPα fragment (Figure 1A) [4, 5].
Numerous primary and immortalized cell lines have been used to analyze APP processing and Aβ production in in vitro cultures. These cell culture systems have proven to be indispensable for the identification of pharmacological and genetic modifiers of APP metabolism prior to in vivo studies [6–8]. It is estimated that 15 to 35% of cell cultures in current use are infected with mycoplasmas [9]. With a diameter of about 0.2 – 0.4 μm, mycoplasmas are small, slow-growing bacteria that are generally unaffected by the antibiotics used against common bacteria and fungi. They can go undetected for long periods of time as the contaminated cells may grow normally and appear normal by light microscopy. Mycoplasma contaminations can however have negative effects, ranging from inhibition of metabolism and growth to induction of malignant transformation or apoptosis [10, 11]. In this study, we show that mycoplasmas can degrade extracellular Aβ. These results indicate that mycoplasma contaminations can introduce an unsuspected source of variability in Aβ level measurements in cultured cells.
Characterization of extracellular Aβ produced by APP-transfected cells
The APP metabolites, sAPPα and Aβ, are readily detectable in the conditioned medium of HEK293 cells stably transfected with the human APP695 isoform (Figure 1B, first lane). As expected, treatment of these cells with the selective γ-secretase inhibitor, L-685,458, prevented Aβ production and promoted accumulation of the APP intermediate fragments C99 and C83 (Figure 1B, second lane).
Degradation of extracellular Aβ by mycoplasma contaminants
To first assess the effect of mycoplasmas on the levels of Aβ in cell culture, medium from mycoplasma-positive cells, detected by polymerase-mediated amplification of mycoplasma genomic DNA (Figure 2A), was diluted 1:1 with conditioned medium from APP-transfected HEK293 cells. The resulting mixture was then incubated at 37°C for different periods of time. Under these conditions, we observed a robust degradation of Aβ after 1 hr of incubation, while sAPPα levels were not affected (Figure 2B, lanes 3–6). Aβ degradation did not occur when fresh medium (Control DMEM) was mixed with Aβ-containing medium (Figure 2B, lanes 1 and 2). Importantly, reduction of the contaminant load by a 0.2 μm filtration of the mycoplasma-positive medium prior to incubation, significantly prevented Aβ degradation (Figure 2B, lanes 7–10). Together these data strongly indicate that mycoplasmas efficiently degrade Aβ during normal cell culture conditions.
Mycoplasma contamination prevents Aβ accumulation in APP-transfected cells
In order to confirm the detrimental effect of mycoplasma contamination on Aβ accumulation in cell culture, we directly analyzed Aβ levels produced by mycoplasma-positive APP-transfected HEK293 cells. Interestingly, no Aβ was detected in the conditioned medium of the mycoplasma-positive cells (Figure 3A, lane 2), while these cells strongly overexpressed APP (Figure 3A, upper panel, lanes 1 and 2).
Mycoplasma eradication restored Aβ accumulation in APP-transfected cells
Successful mycoplasma decontamination can be achieved by treatments with different antibiotics, including quinolones and tetracyclines [9]. Contaminated APP-transfected cells were treated for one week with the quinolone-based antibiotic, MRA (4-oxo-quinolone-3-carboxylic acid derivative). The antibiotic treatment successfully eradicated the mycoplasmas (Figure 3A, lower panel), and restored Aβ accumulation in the conditioned medium of the APP-transfected cells (Figure 3A, middle panel). M. hyorhinis, M. orale, M. arginini, M. fermentans, M. hominis and Acholeplasma laidlawii represent 90–95% of the contaminants in mycoplasma-positive cells [12, 13]. By restriction fragment length polymorphism assay of PCR products amplified from a region of the conserved 16S rDNA gene in mycoplasma species [14], we determined that the APP-transfected cells were contaminated with the M. hyorhinis species (Figure 3B). Together these results show that mycoplasmas degrade Aβ in cell cultures.