Here we describe the in vivo activity of a single-chain IL-12 expressed in an edible crop, the tomato. At present, the crop that has been used the most for production of immunomodulatory molecules is tobacco. This represents, however, an important disadvantage if the recombinant protein is intended to be administered without purification, because of the presence of alkaloids in tobacco extracts. For this reason, the use of edible crops as factories for biopharmaceuticals is highly desirable, particularly for mucosal administration. One interesting approach is that reported by Menassa et al. [8], where IL-10 was expressed in low alkaloid tobacco plants grown in controlled environment chambers and its oral administration significantly reduced the severity of inflammatory bowel disease in a mouse model.
Since we originally planned to administer recombinant murine IL-12 expressed in tomato fruits (tIL-12) without purification, and considering that when free IL-12 beta chain is found in excess, it has the capacity to form homodimers that function as specific IL-12 antagonists, we decided to express a single-chain IL-12 molecule encoded by only one gene, ensuring this way that there would be equivalent amounts of both IL-12 chains [10]. Due to the high IL-12 levels obtained in our transgenic tomato fruits, as compared to those obtained for other cytokines [4–6], it was possible to administer an adequate intratracheal dose of IL-12 to mice in a small volume.
The time course of IL-12 levels was analyzed in lung homogenates and serum at 2, 4, 8, 16 and 24 h after IL-12 treatment (tIL-12 and commercial recombinant, rIL-12). IL-12 protein level in lungs was higher in mice treated with IL-12 than that seen in control mice at all evaluated time points (Figure 1A), which indicates that IL-12 was successfully delivered to the lungs. In addition, small differences in IL-12 levels between recombinant and plant IL-12 treatments were observed. These differences may be caused by the presence of proteases in tomato crude extracts that moderately degrade IL-12 before it is absorbed through respiratory epithelium. A 5% of weight loss was observed on both IL-12 treatments by 24 h (data not shown). Hypoglycemia and decreased food intake have been observed previously in mice treated with IL-12 [11], and perhaps this is the explanation for the weight loss in our experiments. The amount of IL-12 in sera was undetectable in all treatments.
Since IL-12 has a half-life of 5 to 10 h [12], the prediction was that exogenous IL-12 would alter INF-γ production early in the lung. As shown in Figure 1B, INF-γ levels increased significantly at 4 and 8 h in mice treated with IL-12; tIL-12 and rIL-12 induced INF-γ levels in a similar way. By 24 h, INF-γ in the lungs of IL-12-treated mice decreased to the level determined in control mice. INF-γ levels were undetectable in mice serum. This demonstrates, on one hand, that both IL-12s had biological activity and, on the other hand, the response was locally confined.
Our results clearly indicate that plant-expressed IL-12, like recombinant IL-12, was successfully delivered to the lungs, as observed by the IL-12 increase in mice treated with tomato fruit crude extracts or recombinant IL-12. Both IL-12s induced the production of comparable IFNγ levels and the response was induced in a local fashion, according to the absence of IL-12 and IFNγ levels in peripheral blood of treated mice. This observation support that of Huber et al. [2], where intranasal IL-12 administration had no effects on serum IFNγ levels, which correlates with IL-12 reduced toxicity. However, a mild toxicity was observed in mice treated with plant-expressed IL-12 as well as recombinant IL-12, according to a slight weight loss in both treatments (data not shown).
After 2 h of intratracheal administration of tIL-12 or non-transgenic control extracts, mice lungs showed occasional patches of eosinophilic fibrilar material into alveolar spaces with few neutrophils (Figure 2A), while no significant histological changes were seen in mice that received rIL-12. Two hours later, perivenular inflammation and alveolar spaces with fibrilar material surrounded by neutrophils and macrophages were seen in mice treated with tIL-12 or wt extracts. At 12 h and, more evidently, 24 h after the intratracheal administration of tIL-12, mice lung showed nodular patches of intralveolar inflammation constituted by activated macrophages (large cells with compact cytoplasm and big nucleus with marginated chromatin and apparent nucleoli) surrounded by lymphocytes (Figure 2B). Similar inflammatory infiltrates were seen in the lung of mice that received rIL-12 (Figure 2C); bronchioli and blood vessels were surrounded by inflammatory cells (Figure 2D).
It is important to mention that the results presented here are from a single dose of 100 ng IL-12; nevertheless, we first tested a dose-response relationship between IL-12 administration and IFN-γ production, but no increase in IFN-γ levels was observed when using IL-12 doses higher than 100 ng (data not shown).
In conclusion, we showed in this report that tomato-expressed IL-12 displays a functional activity that is similar to that of recombinant IL-12 in vivo when administered through a mucosal route. This opens the possibility of using crude extracts prepared from tomatoes expressing IL-12 for certain immunotherapies where the induction of a Th1 response is necessary. To this respect, the therapeutic effects of plant-based IL-12 were evaluated by oral administration of tomato extracts to mice infected with Mycobacterium tuberculosis and it was found that plant-based IL-12 reduced lung mycobacterial loads, as a consequence of an effective induction of a Th1 response by IL-12 [13]. Finally, we are currently testing the efficacy of plant-based IL-12 in the control of human respiratory syncytial virus infection in a mouse model.