Harries AD, Zachariah R, Lawn SD: Providing HIV care for co-infected tuberculosis patients: a perspective from sub-Saharan Africa. Int J Tuberc Lung Dis. 2009, 13: 6-16.
PubMed
CAS
Google Scholar
Bowen EF, Rice PS, Cooke NT, Whitfield RJ, Rayner CF: HIV seroprevalence by anonymous testing in patients with Mycobacterium tuberculosis and in tuberculosis contacts. Lancet. 2000, 356: 1488-1489. 10.1016/S0140-6736(00)02876-2.
Article
PubMed
CAS
Google Scholar
Msamanga GI, Fawzi WW: The double burden of HIV infection and tuberculosis in sub-Saharan Africa. N Engl J Med. 1997, 337: 849-851. 10.1056/NEJM199709183371210.
Article
PubMed
CAS
Google Scholar
Rose AM, Sinka K, Watson JM, Mortimer JY, Charlett A: "An estimate of the contribution of HIV infection to the recent rise in tuberculosis in England and Wales: should all tuberculosis patients be routinely HIV tested?". Thorax. 2002, 57: 442-445. 10.1136/thorax.57.5.442.
Article
PubMed
CAS
PubMed Central
Google Scholar
Budha Nageshwar, Lee Richard, Meibohm Bernd: Biopharmaceutics, pharmacokinetics pharmacodynamics of antituberculous drugs. Curr Med Chem. 2008, 15 (8):
Updated guidelines for the use of ryfamycins for the treatment of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors. accessed June 25th 2009, [http://www.cdc.gov/nchstp/tb/tb_hiv_drugs/toc.htm]
Rattan A, et al: Multi-drug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis. 1998, 4: 195-209. 10.3201/eid0402.980207.
Article
PubMed
CAS
PubMed Central
Google Scholar
Turner D, Wainberg MA: HIV transmission and primary drug resistance. AIDS REV. 2006, 8: 17-23.
PubMed
Google Scholar
Niemi Mikko, Backman Janne, Fromm Martin, et al: Pharmacokinetic interactions with Rifampicin: clinical relevance. Clin pharmacokinet. 2003, 42: 819-850. 10.2165/00003088-200342090-00003.
Article
PubMed
CAS
Google Scholar
Dean GL, Edwards SG, Ives NJ, Matthews G, Fox EF, Navaratne L, Fisher M, Taylor GP, Miller R, Taylor CB, de Ruiter A, Pozniak AL: Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS. 2002, 16: 75-83. 10.1097/00002030-200201040-00010.
Article
PubMed
CAS
Google Scholar
Pepper DJ, Meintjes GA, McIlleron H, Wilkinson RJ: Combined therapy for tuberculosis and HIV-1: the challenge for drug discovery. Drug Discov Today. 2007, 12: 980-989. 10.1016/j.drudis.2007.08.001.
Article
PubMed
CAS
Google Scholar
Robinson , et al: Pharmacokinetic interactions between nevirapine and rifampin. World AIDs conference Geneva Switzerland. 1998
Google Scholar
Oliva J, Moreno S, Sanz J, et al: Coadministration of rifampin and nevirapine in HIV-infected patients with TB. AIDS. 2003, 17: 637-638.
Article
PubMed
Google Scholar
Ribera E, Pou L, Lopez RM, et al: Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acqui Immune Defic Syndr. 2001, 28: 450-453.
Article
CAS
Google Scholar
Cohen K, van CG, Boulle A, et al: Effect of rifampicin-based antitubercular Therapy on nevirapine plasma concentrations in South African adults with HIV-associatedtuberculosis. J Antimicrob Chemother. 2008, 61 (2): 389-393.
Article
PubMed
CAS
Google Scholar
Lopez-Cortes LF, Ruiz-Valderas R, Viciana P, et al: Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet. 2002, 41: 681-690. 10.2165/00003088-200241090-00004.
Article
PubMed
CAS
Google Scholar
Manosuthi W, Sungkanuparph S, Thakkinstian A, et al: Efavirenz levels and 24-week efficacy in HIV-infected patients with tuberculosis receiving highly active antiretroviral therapy and rifampicin. AIDS. 2005, 19: 1481-1486. 10.1097/01.aids.0000183630.27665.30.
Article
PubMed
CAS
Google Scholar
Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al: Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodefficiency virus disease. Antimicrob Agents chemother. 2004, 48: 4473-4475. 10.1128/AAC.48.11.4473-4475.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P: Determinants of rifampicin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006, 50: 1170-7. 10.1128/AAC.50.4.1170-1177.2006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moreno , et al: Antiretroviral therapy in AIDS patients with tuberculosis. AIDs Rev. 2006, 8: 115-124.
PubMed
Google Scholar
French MA, et al: Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med. 2000, 1: 107-115. 10.1046/j.1468-1293.2000.00012.x.
Article
PubMed
CAS
Google Scholar
Breton G, et al: Determinants of immune reconstitution inflammatory syndrome in HIV Type 1-Infected patients with tuberculosis after initiation of antiretroviral therapy. Clin Infect Dis. 2004, 39: 1709-1712. 10.1086/425742.
Article
PubMed
Google Scholar
Narita M, et al: Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med. 1998, 158: 157-161.
Article
PubMed
CAS
Google Scholar
Bourgarit A, et al: Explosion of tuberculin-specific Th1-responses induce immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS. 2006, F1-F7.
Google Scholar
Shelburne SA, et al: Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS. 2005, 19: 399-406. 10.1097/01.aids.0000161769.06158.8a.
Article
PubMed
Google Scholar
Dean GL, et al: Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS. 2002, 16: 75-83. 10.1097/00002030-200201040-00010.
Article
PubMed
CAS
Google Scholar
Burman WJ, et al: Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001, 40: 327-341. 10.2165/00003088-200140050-00002.
Article
PubMed
CAS
Google Scholar
Piacenti FJ: An update and review of antiretroviral therapy. Pharmacotherapy. 2006, 26: 111-1133.
Article
Google Scholar
Friedland G, Abdool KS, Abdool KQ, Lalloo U, Jack C, Gandhi N, El Sadr W: Utility of tuberculosis directly observed therapy programs as sites for access to and provision of antiretroviral therapy in resource-limited countries. Clin Infect Dis. 2004, 38 (Suppl 5): S421-S428.
Article
PubMed
Google Scholar
Long MC, King JR, Acosta EP: Pharmacological aspects of new antiretroviral drugs. Curr HIV/AIDS Rep. 2009, 6: 43-57. 10.1007/s11904-009-0007-y.
Article
PubMed
Google Scholar
Coicoechea M, Best B: Efavirenz/emtricitabine/tenofovir disoproxil fumaratefixed dose combination, first line therapy for all. Expert Opin Pharmacotherapy. 2007, 8: 371-382. 10.1517/14656566.8.3.371.
Article
Google Scholar
Frampton JE, Croom KF: Efavirenz/emtricitabine/tenofovir disoproxil fumarate: triple combination tablet. Drugs. 2006, 66: 1501-1512. 10.2165/00003495-200666110-00012.
Article
PubMed
CAS
Google Scholar
Bang LM, Scott LJ: Emtricitabine: an antiretroviral agent for HIV infection. Drugs. 2003, 63: 241-242.
Google Scholar
Saag MS: Emtricitabine, a new antiretroviral agent with activity against HIV-1 and hepatitis B virus. Clin Infect Dis. 2006, 42: 126-131. 10.1086/498348.
Article
PubMed
CAS
Google Scholar
Emtriva_ package insert, Gilead Sciences. Foster City. 2004
Droste J, Kearney B, Van Horssen P, Burger D: Lack of clinically relevant drug-drug interaction between tenofovir DF and rifampin in healthy volunteers. 5th International Workshop on clinical pharmacology of HIV therapy. Rome, Italy. April 1-3, 2004. 2004, Abstract 4.11.
Google Scholar
Viread_package insert, Gilead Sciences. 2001, Foster City, Calif
Grim SA, Romanelli F: Tenofovir disoproxil fumarate. Ann Pharmacother. 2003, 37: 849-859.
Article
PubMed
CAS
Google Scholar
Kearney BP, Flaherty JF, Shah J: Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet. 2004, 43: 595-612. 10.2165/00003088-200443090-00003.
Article
PubMed
CAS
Google Scholar
Fumaz CR, Tuldra A, Ferrer MJ, et al: Quality of life, emotional status, and adherence of HIV-1-infected patients treated with efavirenz versus protease inhibitor-containing regimens. J Acquir Immune Defic Syndr. 2002, 29: 244-253.
Article
PubMed
CAS
Google Scholar
Manosuthi W, Kiertiburanakul S, Sungkanuparph S, Ruxrungtham K, Vibhagool A, Rattanasiri S, et al: Efavirenz 600 mg/day versus efavirenz 800 mg/day in HIV-infected patients with tuberculosis receiving rifampicin: 48 weeks results. AIDS. 2006, 20: 131-2. 10.1097/01.aids.0000196181.18916.9b.
Article
PubMed
CAS
Google Scholar
Orrell C, Cohen K, Conradie F, Zeinecker J, Ive P, Sanne I, Wood R: Efavirenz and rifampicin in the South African context: is there a need to dose-increase efavirenz with concurrent rifampicin therapy?. Antivir Ther. 2011, 16: 527-534. 10.3851/IMP1780.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brennan-Bonson P, Lyus R, Harrison T, Pakianathan M, Macallan D: Pharmacokinetic interactions between efavirenz and rifampicin in the treatment of HIV and tuberculosis: one size does not fit all. AIDS. 2005, 19: 1541-1543. 10.1097/01.aids.0000183519.45137.a6.
Article
Google Scholar
Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, et al: Pharmacogenetics of efavirenz and central nervous system side effects:an Adults AIDS Clinical Trial Group Study. AIDS. 2004, 18: 2391-400.
PubMed
CAS
Google Scholar
Friedland G, Khoo S, Jack C, Lallo U: Administration of efavirenz (600 mg/day) with rifampicin results in highly variable level but excellent clinical outcomes in patients treated for tuberculosis and HIV. Antimicrob Agents Chemother. 2006, 58: 1299-302. 10.1093/jac/dkl399.
Article
CAS
Google Scholar
Desta Z, Saussele T, Ward B, et al: Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007, 8 (6): 547-558. 10.2217/14622416.8.6.547.
Article
PubMed
CAS
Google Scholar
Ward BA, Gorski JC, Jones DR, et al: The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003, 306: 287-300. 10.1124/jpet.103.049601.
Article
PubMed
CAS
Google Scholar
Bumpus NN, Kent UM, Hollenberg PF: Metabolism of efavirenz and 8-hydroxyefavirenz by P450 2B6 leads to inactivation by two distinct mechanisms. J Pharmacol Exp Ther. 2006, 318: 345-351. 10.1124/jpet.106.102525.
Article
PubMed
CAS
Google Scholar
Tsuchiya K, Gatanaga H, Tachikawa N, et al: Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun. 2004, 319: 1322-1326. 10.1016/j.bbrc.2004.05.116.
Article
PubMed
CAS
Google Scholar
Klein K, Lang T, Saussele T, et al: Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genomics. 2005, 15 (12): 861-873. 10.1097/01213011-200512000-00004.
Article
PubMed
CAS
Google Scholar
Heine Robter, et al: A pharmacokinetic and pharmacogenetic study of efavirenz in children; dosing guidelines can result in sub-therapeutic concentrations. Antivir Therapy. 2008, 13: 779-787.
Google Scholar
Cabrera SE, Santos D, Valverde MP, et al: Influence of the cytochrome P450 2B6 genotype on population pharmacokinetics of efavirenz in human immunodeficiency virus patients. Antimicrob Agents Chemother. 2009, 53: 2791-2798. 10.1128/AAC.01537-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Arab-Alameddine M, Di Iulio J, Buclin T, et al: Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals. Clin Pharmacol Ther. 2009, 85: 485-494. 10.1038/clpt.2008.271.
Article
PubMed
CAS
Google Scholar
Nyakutira C, Roshammar D, Chigutsa E, et al: High prevalence of the CYP2B6 516 G-- > T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol. 2008, 64: 357-365. 10.1007/s00228-007-0412-3.
Article
PubMed
CAS
Google Scholar
Wang J, Sonnerborg A, Rane A, et al: Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics. 2006, 16: 191-198.
Article
PubMed
Google Scholar
Ngaimisi E, Mugusi S, Minzi O, Sasi P, Riedel KD, Suda A, Ueda N, Janabi M, Mugusi F, Haefeli WE, Bertilsson L, Burhenne J, Aklillu E: Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin Pharmacol Ther. 2011, 90: 406-413. 10.1038/clpt.2011.129.
Article
PubMed
CAS
Google Scholar
Uttayamakul S, Likanonsakul S, Manosuthi W, Wichukchinda N, Kalambaheti T, Nakayama EE, Shioda T, Khusmith S: Effects of CYP2B6 G516T polymorphisms on plasma efavirenz and nevirapine levels when co-administered with rifampicin in HIV/TB co-infected Thai adults. AIDS Res Ther. 2010, 7: 8-10.1186/1742-6405-7-8.
Article
PubMed
PubMed Central
Google Scholar
Kwara A, Lartey M, Sagoe KW, Xexemeku F, Kenu E, Oliver-Commey J, Boima V, Sagoe A, Boamah I, Greenblatt DJ, Court MH: Pharmacokinetics of efavirenz when co-administered with rifampin in TB/HIV co-infected patients: pharmacogenetic effect of CYP2B6 variation. J Clin Pharmacol. 2008, 48: 1032-1040. 10.1177/0091270008321790.
Article
PubMed
CAS
PubMed Central
Google Scholar
Scherpbier HJ, Bekker V, et al: Once daily highly active antiretroviral therapy for HIV-1 infected children: safety and efficacy of an efavirenz containing regimen. Pediatrics. 2007, 119: 705-715. 10.1542/peds.2006-1367.
Article
Google Scholar
von Hentig N, Koenigs C, Elanjikal S, et al: Need for therapeutic drug monitoring in HIV-1 infected children receiving efavirenz doses according to international guidelines. Eur J Med Res. 2006, 11: 377-380.
PubMed
CAS
Google Scholar
Ren Y, Nuttall JJ, Egbers C, et al: High prevalence of subtherapeutic plasma concentrations of efavirenz in children. J Acquir Immune Defic Syndr. 2007, 45: 133-136. 10.1097/QAI.0b013e31805c9d52.
Article
PubMed
CAS
Google Scholar
Saitoh A, Fletcher CV, Brundage R, et al: Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. J Acquir Immune Defic Syndr. 2007, 45: 280-285.
PubMed
CAS
Google Scholar
Fletcher CV, Brundage RC, Fenton T, et al: Pharmacokinetics and pharmacodynamics of efavirenz and nelfinavir in HIV-infected children participating in an area-under-the-curve controlled trial. Clin Pharmacol Ther. 2008, 83: 300-306. 10.1038/sj.clpt.6100282.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schneider S, Peltier A, Gras A, et al: Efavirenz in human breast milk, mothers', and newborns' plasma. J Acquir Immune Defic Syndr. 2008, 48: 450-454. 10.1097/QAI.0b013e31817bbc21.
Article
PubMed
CAS
Google Scholar
Teglas JP, Quartier P, Treluyer JM, et al: Tolerance of efavirenz in children. AIDS. 2001, 15: 241-243. 10.1097/00002030-200101260-00014.
Article
PubMed
CAS
Google Scholar
Viljoen M, Gous H, Kruger HS, Riddick A, Meyers TM, Rheeders M: Efavirenz plasma concentrations at 1, 3, and 6 months post-antiretroviral therapy initiation in HIV type 1-infected South African children. AIDS Res Hum Retroviruses. 2010, 26: 613-619. 10.1089/aid.2009.0200.
Article
PubMed
CAS
Google Scholar
Hirt D, Urien S, Olivier M, et al: Are recommended dose of efavirenz optimal in young West African HIV-infected children? (ANRS 12103). Antimicrob Agents Chemother. 2009, *Important report on suboptimal efavirenz exposure in African children
Google Scholar
Fillekes Q, et al: Pediatric under-dosing of efavirenz: a pharmacokinetic study in Uganda. Advance online edition JAIDS. 2011
Google Scholar
De Jong BC, Israelski DM, Corbett EL, et al: Clinical management of tuberculosis in the context of HIV infection. Annu Rev Med. 2004, 55: 283-301. 10.1146/annurev.med.55.091902.103753.
Article
PubMed
CAS
Google Scholar
Pozniak AL, Miller R, Ormerod LP: The treatment of tuberculosis in HIV-infected persons. AIDS. 1999, 13: 435-45. 10.1097/00002030-199903110-00001.
Article
PubMed
CAS
Google Scholar
Manosuthi W, Mankatitharm W, Lueangnivomkul A, et al: Standard dose efavirenz vs standard dose nevirapine in antiretroviral regimens among HIV-1 and tuberculosis co-infected patients who receive rifampicin. HIV Med. 2008, 9: 294-299. 10.1111/j.1468-1293.2008.00563.x.
Article
PubMed
CAS
Google Scholar
Pozniak AL, Miller R, Ormerod LP: The treatment of tuberculosis in HIV-infected persons. AIDS. 1999, 13: 435-45. 10.1097/00002030-199903110-00001.
Article
PubMed
CAS
Google Scholar
Moreno S, Podzamczer D, Blazquez R, et al: Treatment of tuberculosis in HIV-infected patients: safety and antiretroviral efficacy of the concomitant use of ritonavir and rifampin. AIDS. 2001, 15: 1185-1187. 10.1097/00002030-200106150-00018.
Article
PubMed
CAS
Google Scholar
Justesen US, Andersen AB, Klitgaard NA, et al: Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose ritonavir in HIV-infected patients. Clin Infect Dis. 2004, 38: 426-429. 10.1086/380794.
Article
PubMed
CAS
Google Scholar
La Porte CJ, Colbers EP, Bertz R, et al: Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother. 2004, 48: 1553-60. 10.1128/AAC.48.5.1553-1560.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Burger DM, Agarwala S, Child M, et al: Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob Agents Chemother. 2006, 50: 3336-42. 10.1128/AAC.00461-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ribera E, Azuaje C, Lopez RM, et al: Pharmacokinetic interaction between rifampicin and the once-daily combination of saquinavir and low-dose ritonavir in HIV-infected patients with tuberculosis. J Antimicrob Chemother. 2007, 59: 690-697. 10.1093/jac/dkl552.
Article
PubMed
CAS
Google Scholar
Bousquet L, Pruvost A, Guvut AC, et al: Combination of tenofovir and emtricitabine plus efavirenz in vitro modulation of ABC transporter and intracellular drug accumulation. Antimicrob agent Chemother. 2009, 53: 896-902. 10.1128/AAC.00733-08.
Article
CAS
Google Scholar
Hardy H, Skolnik PR: Enfuvirtide, a new fusion inhibitor for therapy of humanimmunodeficiency virus infection. Pharmacotherapy. 2004, 24: 198-211. 10.1592/phco.24.2.198.33141.
Article
PubMed
CAS
Google Scholar
Lalezari JP, Henry K, O'Hearn M, Montaner JS, Piliero PJ, Trottier B, et al: Enfuvirtide, an HIV-1 fusion inhibitor, for drug resistant HIV infection in North and South America. N Engl J Med. 2003, 348: 2175-2185. 10.1056/NEJMoa035026.
Article
PubMed
CAS
Google Scholar
Lazzarin A, Clotet B, Cooper D, Reyness J, Arasteh K, Nelson M, et al: Efficacy of enfuvirtide in patients infected with drug resistance HIV-1 in Europe and Australia. N Engl J Med. 2003, 348: 2175-2185. 10.1056/NEJMoa035026.
Article
Google Scholar
Nelson M, Arasteh K, Clotet B, Cooper DA, Henry K, Katlama C, et al: Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1 infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr. 2005, 40: 404-412. 10.1097/01.qai.0000185314.56556.c3.
Article
PubMed
CAS
Google Scholar
Youle M, Staszweski S, Clotet B, Arribas JR, Blaxhult A, Carosi G, et al: Concomitant use of an active boosted protease inhibitor with enfuvirtide in treatment-experienced HIV-1 infected individuals: recent data and consensus recommendations. HIV lin trials. 2006, 7: 86-96. 10.1310/2XVK-PBGL-735N-WH72.
Article
Google Scholar
Ruxrungtham K, Boyd M, Bellibas SE, et al: Lack of interaction between enfuvirtide and ritonavir or ritonavir-boosted saquinavir in HIV-1-infected patients. J Clin Pharmacol. 2004, 44: 793-803. 10.1177/0091270004266489.
Article
PubMed
CAS
Google Scholar
Boyd MA, Zhang X, Dorr A, Ruxrungtham K, et al: Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol. 2003, 43: 1382-1391. 10.1177/0091270003259220.
Article
PubMed
CAS
Google Scholar