Chow L, Gelinas R, Broker T, Roberts R: An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell. 1977, 12 (1): 1-8. 10.1016/0092-8674(77)90180-5.
Article
PubMed
CAS
Google Scholar
Irimia M, Roy S: Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res. 2008, 36 (5): 1703-12. 10.1093/nar/gkn012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Elgar G: Pan-vertebrate conserved non-coding sequences associated with developmental regulation. Brief Funct Genomic Proteomic. 2009, 8 (4): 256-65. 10.1093/bfgp/elp033.
Article
PubMed
Google Scholar
Keightley P, Gaffney D: Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents. Proc Natl Acad Sci USA. 2003, 100: 13402-13406. 10.1073/pnas.2233252100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G: Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 2005, 3 (1): e7-10.1371/journal.pbio.0030007.
Article
PubMed
PubMed Central
Google Scholar
Majewski J, Ott J: Distribution and characterization of regulatory elements in the human genome. Genome Res. 2002, 12: 1827-1836. 10.1101/gr.606402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hong X, Scofield D, Lynch M: Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol. 2006, 23 (12): 2392-404. 10.1093/molbev/msl111.
Article
PubMed
CAS
Google Scholar
Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408 (6814): 796-815. 10.1038/35048692.
Article
Google Scholar
Castillo-Davis C, Mekhedov S, Hartl D, Koonin E, Kondrashov F: Selection for short introns in highly expressed genes. Nat Genet. 2002, 31 (4): 415-8.
PubMed
CAS
Google Scholar
Marais G, Nouvellet P, Keightley P, Charlesworth B: Intron size and exon evolution in Drosophila. Genetics. 2005, 170 (1): 481-5. 10.1534/genetics.104.037333.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kumar A, Bennetzen J: Plant retrotransposons. Annu Rev Genet. 1999, 33: 479-532. 10.1146/annurev.genet.33.1.479.
Article
PubMed
CAS
Google Scholar
Wong G, Passey D, Yu J: Most of the human genome is transcribed. Genome Res. 2001, 11 (12): 1975-7. 10.1101/gr.202401.
Article
PubMed
CAS
Google Scholar
Bennetzen J: Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology. 2000, 42 (1): 251-69. 10.1023/A:1006344508454.
Article
PubMed
CAS
Google Scholar
Messing J, Bennetzen J: Grass genome structure and evolution. Genome Dyn. 2008, 4: 41-56. full_text.
Article
PubMed
CAS
Google Scholar
Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D: Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 2005, 1 (1): 109-18. 10.1371/journal.pgen.0010006.
Article
PubMed
CAS
Google Scholar
This P, Lacombe T, Cadle-Davidson M, Owens C: Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet. 2007, 114 (4): 723-30. 10.1007/s00122-006-0472-2.
Article
PubMed
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449 (7161): 463-7. 10.1038/nature06148.
Article
PubMed
CAS
Google Scholar
Wendel J, Cronn R, Alvarez I, Liu B, Small R, Senchina D: Intron size and genome size in plants. Mol Biol Evol. 2002, 12: 2346-52.
Article
Google Scholar
Lanier W, Moustafa A, Bhattacharya D, Comeron J: EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One. 2008, 3 (5): e2171-10.1371/journal.pone.0002171.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Li S, Zhang Y, Zheng H, Xu Z, Ye J, Yu J, Wong G: Vertebrate gene predictions and the problem of large genes. Nat Rev Genet. 2003, 9: 741-9. 10.1038/nrg1160.
Article
Google Scholar
Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ, Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA: Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics. 2008, 9: 562-10.1186/1471-2164-9-562.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Niu D: Evidence against the energetic cost hypothesis for the short introns in highly expressed genes. BMC Evol Biol. 2008, 8: 154-10.1186/1471-2148-8-154.
Article
PubMed
PubMed Central
Google Scholar
Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP: In plants, highly expressed genes are the least compact. Trends Genet. 2006, 22 (10): 528-32. 10.1016/j.tig.2006.08.008.
Article
PubMed
CAS
Google Scholar
Wendel J, Cronn R, Johnston J, Price H: Feast and famine in plant genomes. Genetica. 2002, 115 (1): 37-47. 10.1023/A:1016020030189.
Article
PubMed
CAS
Google Scholar
Vitte C, Panaud O, Quesneville H: LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics. 2007, 8: 218-10.1186/1471-2164-8-218.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Liu J: LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics. 2008, 9: 382-10.1186/1471-2164-9-382.
Article
PubMed
PubMed Central
Google Scholar
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL: Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996, 274 (5288): 765-8. 10.1126/science.274.5288.765.
Article
PubMed
CAS
Google Scholar
Moisy C, Garrison K, Meredith C, Pelsy F: Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome. BMC Genomics. 2008, 9: 469-10.1186/1471-2164-9-469.
Article
PubMed
PubMed Central
Google Scholar
Wawrzynski A, Ashfield T, Chen NW, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O'Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MA, Young ND, Innes RW: Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol. 2008, 148 (4): 1760-71. 10.1104/pp.108.127910.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vitte C, Panaud O: LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Genome Res. 2005, 110 (1-4): 91-107.
Article
CAS
Google Scholar
Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE: Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA. 2009, 106 (10): 3853-8. 10.1073/pnas.0813376106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wikström N, Savolainen V, Chase MW: Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001, 268 (1482): 2211-20.
Article
PubMed
PubMed Central
Google Scholar
Magallón S, Castillo A: Angiosperm diversification through time. American Journal of Botany. 2009, 96: 349-365.
Article
PubMed
Google Scholar
Costa J, de Melo D, Gouveia Z, Cardoso H, Peixe A, Arnholdt-Schmitt B: The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. Physiol Plant. 2009, 137 (4): 553-65. 10.1111/j.1399-3054.2009.01267.x.
Article
PubMed
CAS
Google Scholar
Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T: Bursts of retrotransposition reproduced in Arabidopsis. Nature. 2009, 461 (7262): 423-6. 10.1038/nature08351.
Article
PubMed
CAS
Google Scholar
Wessler S, Bureau T, Whitea S: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995, 5 (6): 814-21. 10.1016/0959-437X(95)80016-X.
Article
PubMed
CAS
Google Scholar
Hawkins J, Proulx S, Rapp R, Wendel J: Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA. 2009, 106 (42): 17811-6. 10.1073/pnas.0904339106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barnaud A, Laucou V, This P, Lacombe T, Doligez A: Linkage disequilibrium in wild French grapevine, Vitis vinifera L. subsp. silvestris. Heredity. 2009,
Google Scholar
Baucom R, Estill J, Leebens-Mack J, Bennetzen J: Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res. 2009, 19 (2): 243-54. 10.1101/gr.083360.108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Naito K, Cho E, Yang G, Campbell M, Yano K, Okumoto Y, Tanisaka T, Wessler S: Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA. 2006, 103 (47): 17620-5. 10.1073/pnas.0605421103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gao L, McCarthy E, Ganko E, McDonald J: Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics. 2004, 5 (1): 18-10.1186/1471-2164-5-18.
Article
PubMed
PubMed Central
Google Scholar
Parkinson J, Anthony A, Wasmuth J, Schmid R, Hedley A, Blaxter M: PartiGene--constructing partial genomes. Bioinformatics. 2004, 20 (9): 1398-404. 10.1093/bioinformatics/bth101.
Article
PubMed
CAS
Google Scholar
Parkinson J, Guiliano D, Blaxter M: Making sense of EST sequences by CLOBBing them. BMC Bioinformatics. 2002, 3: 31-10.1186/1471-2105-3-31.
Article
PubMed
PubMed Central
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J: TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003, 19 (5): 651-2. 10.1093/bioinformatics/btg034.
Article
PubMed
CAS
Google Scholar
Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
de la Bastide M, McCombie W: Assembling genomic DNA sequences with PHRAP. Curr Protoc Bioinformatics. 2007, Chapter 11: Unit11.4-
PubMed
Google Scholar
Iseli C, Jongeneel C, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999, 1999: 138-48.
Google Scholar
Kent W: BLAT--the BLAST-like alignment tool. Genome Res. 2002, 12 (4): 656-64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunesekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Research. 2010, D211-222. 10.1093/nar/gkp985. 38 Database
Smit A, Hubley R, Green P: RepeatMasker. 2009, [http://repeatmasker.org]
Google Scholar
Xu Z, Wang H: LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, W265-8. 10.1093/nar/gkm286. 35 Web Server
SanMiguel P, Gaut B, Tikhonov A, Nakajima Y, Bennetzen J: The paleontology of intergene retrotransposons of maize. Nature. 1998, 20: 43-45.
CAS
Google Scholar
Jukes T, Cantor C: Evolution of protein molecules. Edited by: Munro H. 1990, Mammalian protein metabolism. Academic press, 21-132.
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2009, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, [http://www.R-project.org]
Google Scholar