Wang K, Jenwitheesuk E, Samudrala R, Mittler JE: Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance. Antivir Ther. 2004, 9 (3): 343-352.
PubMed
CAS
Google Scholar
Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J: Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci USA. 2002, 99 (12): 8271-8276. 10.1073/pnas.112177799.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang D, Larder B: Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks. J Infect Dis. 2003, 188 (5): 653-660. 10.1086/377453.
Article
PubMed
Google Scholar
Beerenwinkel N, Däumer M, Oette M, Korn K, Hoffmann D, Kaiser R, Lengauer T, Selbig J, Walter H: Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res. 2003, 31 (13): 3850-3855. 10.1093/nar/gkg575.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xu S, Huang X, Xu H, Zhang C: Improved Prediction of Coreceptor Usage and Phenotype of HIV-1 Based on Combined Features of V3 Loop Sequence Using Random Forest. Journal of Microbiology. 2007, 45: 441-446.
CAS
Google Scholar
Ong S, Lin H, Chen Y, Li Z, Cao Z: Efficacy of different protein descriptors in predicting protein functional families. BMC Bioinformatics. 2007, 8: 300-10.1186/1471-2105-8-300.
Article
PubMed
PubMed Central
Google Scholar
Rhee SY, Taylor J, Wadhera G, Ben-Hur A, Brutlag DL, Shafer RW: Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci USA. 2006, 103 (46): 17355-17360. 10.1073/pnas.0607274103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qian N, Sejnowski TJ: Predicting the secondary structure of globular proteins using neural network models. Journal of molecular biology. 1988, 202 (4): 865-84. 10.1016/0022-2836(88)90564-5.
Article
PubMed
CAS
Google Scholar
Punta M, Rost B: Neural networks predict protein structure and function. Humana Press, Berlin, Germany 2008 chap. Artificial Neural Networks: Methods and Protocols
Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J: Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests. IEEE Intelligent Systems. 2001, 16: 35-41. 10.1109/5254.972080.
Article
Google Scholar
Boisvert S, Marchand M, Laviolette F, Corbeil J: HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology. 2008, 5: 110-10.1186/1742-4690-5-110.
Article
PubMed
PubMed Central
Google Scholar
Sonnenburg S, Zien A, Philips P, Rätsch G: POIMs: positional oligomer importance matrices-understanding support vector machine-based signal detectors. Bioinformatics. 2008, 24 (13): i6-14. 10.1093/bioinformatics/btn170.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C: Text Classification using String Kernels. Journal of Machine Learning Research. 2002, 2: 419-444. 10.1162/153244302760200687.
Google Scholar
Jensen MA, Li FS, van Wout AB, Nickle DC, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI: Improved Coreceptor Usage Prediction and Genotypic Monitoring of R5-to-X4 Transition by Motif Analysis of Human Immunodeficiency Virus Type 1 env V3 Loop Sequences. Journal of Virology. 2003, 77: 13376-13388. 10.1128/JVI.77.24.13376-13388.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Resch W, Hoffman N, Swanstrom R: Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks. Virology. 2001, 288: 51-62. 10.1006/viro.2001.1087.
Article
PubMed
CAS
Google Scholar
Heider D, Appelmann J, Bayro T, Dreckmann W, Held A, Winkler J, Barnekow A, Borschbach M: A computational approach for the identification of small GTPases based on preprocessed amino acid sequences. Technology in Cancer Research and Treatment. 2009, 8 (5): 333-342.
Article
PubMed
CAS
Google Scholar
Dybowski JN, Heider D, Hoffmann D: Prediction of co-receptor usage of HIV-1 from genotype. PLoS Comput Biol. 2010, 6 (4): e1000743-10.1371/journal.pcbi.1000743.
Article
PubMed
PubMed Central
Google Scholar
Heider D, Hauke S, Pyka M, Kessler D: Insights into the classification of small GTPases. Advances and Applications in Bioinformatics and Chemistry. 2010, 3: 15-24. 10.2147/AABC.S8891.
Article
PubMed
CAS
PubMed Central
Google Scholar
Quinones-Mateu ME, Tadele M, Parera M, Mas A, Weber J, Rangel HR, Chakraborty B, Clotet B, Domingo E, Menéndez-Arias L, Martínez MA: Insertions in the reverse transcriptase increase both drug resistance and viral fitness in a human immunodeficiency virus type 1 isolate harboring the multi-nucleoside reverse transcriptase inhibitor resistance 69 insertion complex mutation. J Virol. 2002, 76 (20): 10546-10552. 10.1128/JVI.76.20.10546-10552.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kozisek M, Saskova KG, Rezacova P, Brynda J, van Maarseveen NM, Jong DD, Boucher CA, Kagan RM, Nijhuis M, Konvalinka J: Ninety-nine is not enough: molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region. J Virol. 2008, 82 (12): 5869-5878. 10.1128/JVI.02325-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hou T, Zhang W, Wang J, Wang W: Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Proteins. 2009, 74 (4): 837-846. 10.1002/prot.22192.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kierczak M, Ginalski K, Dramiński M, Koronacki J, Rudnicki W, Komorowski J: A Rough Set-Based Model of HIV-1 Reverse Transcriptase Resistome. Bioinform Biol Insights. 2009, 3: 109-127.
PubMed
CAS
PubMed Central
Google Scholar
Heider D, Verheyen J, Hoffmann D: Predicting Bevirimat resistance of HIV-1 from genotype. BMC Bioinformatics. 2010, 11: 37-10.1186/1471-2105-11-37.
Article
PubMed
PubMed Central
Google Scholar
Altmann A, Rosen-Zvi M, Prosperi M, Aharoni E, Neuvirth H, Schülter E, Büch J, Struck D, Peres Y, Incardona F, Sönnerborg A, Kaiser R, Zazzi M, Lengauer T: Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy. PloS one. 2008, 3 (10): e3470-10.1371/journal.pone.0003470.
Article
PubMed
PubMed Central
Google Scholar
Kjaer J, Høj L, Fox Z, Lundgren JD: Prediction of phenotypic susceptibility to antiretroviral drugs using physiochemical properties of the primary enzymatic structure combined with artificial neural networks. HIV medicine. 2008, 9 (8): 642-52. 10.1111/j.1468-1293.2008.00612.x.
Article
PubMed
CAS
Google Scholar
Haq O, Levy RM, Morozov AV, Andrec M: Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease. BMC bioinformatics. 2009, 10 (Suppl 8): S10-10.1186/1471-2105-10-S8-S10.
Article
PubMed
PubMed Central
Google Scholar
Vetter IR, Wittinghofer A: The guanine nucleotide-binding switch in three dimensions. Science. 2001, 294 (5545): 1299-1304. 10.1126/science.1062023.
Article
PubMed
CAS
Google Scholar
Karnoub AE, Weinberg RA: Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008, 9 (7): 517-531. 10.1038/nrm2438.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pao GM, Wu LF, Johnson KD, Höfte H, Chrispeels MJ, Sweet G, Sandal NN, Saier MH: Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol. 1991, 5: 33-37. 10.1111/j.1365-2958.1991.tb01823.x.
Article
PubMed
CAS
Google Scholar
Kyte J, Doolittle R: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157: 105-132. 10.1016/0022-2836(82)90515-0.
Article
PubMed
CAS
Google Scholar
Breiman L: Random Forests. Machine Learning. 2001, 45: 5-32. 10.1023/A:1010933404324.
Article
Google Scholar
Torti C, Quiros-Roldan E, Monno L, Patroni A, Saracino A, Angarano G, Tinelli C, Caputo SL, Tirelli V, Mazzotta F, Carosi G, Group MASTERCGS, Group MASTERCPS: Drug resistance mutations and newly recognized treatment-related substitutions in the HIV-1 protease gene: prevalence and associations with drug exposure and real or virtual phenotypic resistance to protease inhibitors in two clinical cohorts of antiretroviral experienced patients. J Med Virol. 2004, 74: 29-33. 10.1002/jmv.20142.
Article
PubMed
CAS
Google Scholar
Kempf DJ, Isaacson JD, King MS, Brun SC, Xu Y, Real K, Bernstein BM, Japour AJ, Sun E, Rode RA: Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol. 2001, 75 (16): 7462-7469. 10.1128/JVI.75.16.7462-7469.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Colonno R, Rose R, McLaren C, Thiry A, Parkin N, Friborg J: Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis. 2004, 189 (10): 1802-1810. 10.1086/386291.
Article
PubMed
CAS
Google Scholar
Patick AK, Duran M, Cao Y, Shugarts D, Keller MR, Mazabel E, Knowles M, Chapman S, Kuritzkes DR, Markowitz M: Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob Agents Chemother. 1998, 42 (10): 2637-2644.
PubMed
CAS
PubMed Central
Google Scholar
Shulman NS, Bosch RJ, Mellors JW, Albrecht MA, Katzenstein DA: Genetic correlates of efavirenz hypersusceptibility. AIDS. 2004, 18 (13): 1781-1785. 10.1097/00002030-200409030-00006.
Article
PubMed
CAS
Google Scholar
Guo Y, Yu L, Wen Z, Li M: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res. 2008, 36 (9): 3025-3030. 10.1093/nar/gkn159.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu B, Wang X, Lin L, Tang B, Dong Q, Wang X: Prediction of protein binding sites in protein structures using hidden Markov support vector machine. BMC Bioinformatics. 2009, 10: 381-10.1186/1471-2105-10-381.
Article
PubMed
PubMed Central
Google Scholar
Chou KC: Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001, 43 (3): 246-255. 10.1002/prot.1035.
Article
PubMed
CAS
Google Scholar
Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD: Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM. Pattern Recognition Letters. 2007, 28: 1610-1615. 10.1016/j.patrec.2007.04.001.
Article
Google Scholar
Liu B, Wang X, Lin L, Dong Q, Wang X: A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinformatics. 2008, 9: 510-10.1186/1471-2105-9-510.
Article
PubMed
PubMed Central
Google Scholar
Kernytsky A, Rost B: Using genetic algorithms to select most predictive protein features. Proteins. 2009, 75: 75-88. 10.1002/prot.22211.
Article
PubMed
CAS
Google Scholar
Nanni L, Lumini A: Using ensemble of classifiers for predicting HIV protease cleavage sites in proteins. Amino Acids. 2009, 36 (3): 409-416. 10.1007/s00726-008-0076-z.
Article
PubMed
CAS
Google Scholar
Dubchak I, Muchnik I, Holbrook S, Kim S: Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA. 1995, 92 (19): 8700-8704. 10.1073/pnas.92.19.8700.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson TB, Chou KC, Zheng C: Neural network prediction of the HIV-1 protease cleavage sites. Journal of theoretical biology. 1995, 177 (4): 369-79. 10.1006/jtbi.1995.0254.
Article
PubMed
CAS
Google Scholar
Pánek J, Eidhammer I, Aasland R: Using hydropathy features for function prediction of membrane proteins. Molecular membrane biology. 2007, 24 (4): 304-12.
Article
PubMed
Google Scholar
Chowriappa P, Dua S, Kanno J, Thompson HW: Protein structure classification based on conserved hydrophobic residues. IEEE/ACM transactions on computational biology and bioinformatics/IEEE, ACM. 2008, 6 (4): 639-51. 10.1109/TCBB.2008.77.
Article
Google Scholar
Borschbach M, Hauke S, Pyka M, Heider D: Opportunities and limitations of a principal component analysis optimized machine learning approach for the identification and classification of cancer involved proteins. Communications of the SIWN. 2009, 6: 85-89.
Google Scholar
Forsythe GE: Computer Methods for Mathematical Computations. 1977, Prentice Hall
Google Scholar
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP: Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003, 43: 1947-1958.
Article
PubMed
CAS
Google Scholar
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A: Conditional variable importance for random forests. BMC Bioinformatics. 2008, 9: 307-10.1186/1471-2105-9-307.
Article
PubMed
PubMed Central
Google Scholar
Cawley GC: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. Proceedings of the IEEE World Congress on Computational Intelligence. 2006
Google Scholar
Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters. 2006, 27: 861-874. 10.1016/j.patrec.2005.10.010.
Article
Google Scholar
Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier performance in R. Bioinformatics. 2005, 21 (20): 3940-3941. 10.1093/bioinformatics/bti623.
Article
PubMed
CAS
Google Scholar
Wilcoxon F: Individual comparisons by ranking methods. Biometrics. 1945, 1: 80-83. 10.2307/3001968.
Article
Google Scholar
Demsar J: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research. 2006, 7: 1-30.
Google Scholar