Microsatellite DNA markers and MLPA have been considered highly informative and easily manageable for diagnostic confirmation of WBS.
In our study, five microsatellite markers (D7S1870, D7S489, D7S613, D7S2476, and D7S489A) were informative, except in four cases.
However, in these particular cases, short stature, microcephaly, and cardiovascular anomalies were absent, but not in one patient that presented mitral and tricuspid regurgitation and hiperacusis.
The D7S1870 microsatellite marker showed the highest power of detection, able to identify 78.4% of the cases by itself, which confirmed the results from previous studies [8, 16–19].
Two best markers (D7S1870 and D7S613) in our study were able to detect the deletion in 93.2% of cases when used together. When the D7S613 and D7S489 markers were included, informative detection increased to almost 95%.
The microsatellite marker D7S489A was effective in the analysis of deletion size. The 1.55-Mb deletion was found in 57 of 64 (89.1%) patients, and the 1.84-Mb deletion was found in 7 of 64 patients (10.9%); these observed percentages are similar to those found in other studies in the literature [8].
Using markers to identify the parental origin, we found no significant difference between the frequencies of maternal and paternal deletions (56.3% and 43.7%, respectively), and the literature is concordant with our findings [12, 13, 17, 19].
There was also no relationship between clinical features with the size of the deletion and with the parental origin.
Since the MLPA technique was developed [14], it has been tested as a diagnostic method in several diseases involving chromosomal disorders. In this study, we used the MLPA kit (P029) to observe the microdeletion in 64 (72.7%) patients and find it was absent in 24 (27.3%) patients.
We find four discrepant results comparing the microsatellite markers and the MLPA method in the detection of deletions in the WBS critical region. In these patients where the microsatellite markers are uninformative, detection of the deletion can be confirmed using the MLPA technique. These patients present a phenotypic variability that often leads to diagnostic difficulties and the confirmation of results only was possible using MLPA technique.
The microsatellite markers were efficient in deletion detection for WBS when compared to the MLPA. They allowed for the detection of deletions larger than 1.55 MB and for detection of the parental origin of the deletion.
FISH is widely used and considered the gold standard for WBS molecular diagnosis, however, FISH is labor-intensive, time-consuming, and it does not allow the detection of the exact size of the deletion [20].
The cost of the microsatellite marker technique has greatly decreased, and it can be deployed in molecular biology laboratories that have basic equipment for conventional PCR reactions and a vertical electrophoresis system.
The most important advantages of the MLPA are its relative simplicity, low cost, rapid turnaround (2 days), ease of multiplexing to permit high confidence in the results, high accuracy of copy number estimation, and the potential for combination of copy number analysis with other applications, such as methylation detection or SNP genotyping [21].
The accuracy of both diagnostic tests is well recognized to be susceptible to technical problems and clinical heterogeneity. In our study, FISH, markers and MLPA presented higher sensitivity (99.8%), similar to others studies [22] and microsatellites markers presents lower specificity compared to FISH and MLPA (93%).
Real-time quantitative polymerase chain reaction technique (QPCR) and array-based comparative genomic hybridisation (array-CGH) are also being used for the molecular diagnosis of WBS.
QPCR is considered a robust methodology, with easy interpretation, and simple to set up [23, 24]. Conversely, to perform this technique we need sophisticated equipments and specific primers for each target region, differently from MLPA, where the simultaneous hybridization of more than 40 different probes can be used in one single reaction.
Recently, array-CGH has also been proved also to be a powerful and promising method to detect microdeletions and to identify novel cytogenetic abnormalities [25]. However, the resolution of array-CGH can vary depending on the format and design of the array [26]. Additionally, this method is relatively difficult and costly, and it requires a different setup as far as instrumentation is concerned [25].
Economic models are important to help health professionals to take decisions based on available strategies. The molecular tests available together with socio economic characteristics of the country is fundamental when a new strategy is considered to be taken, especially in developing countries where resources are limited [27].