Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419.
Article
PubMed
CAS
Google Scholar
Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17: 3011-3016.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD: A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science. 2011, 293: 834-838.
Article
Google Scholar
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309: 310-311.
Article
PubMed
CAS
Google Scholar
Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E: Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006, 38: 356-362.
Article
PubMed
CAS
Google Scholar
Nat Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Rev Cancer. 2006, 6: 259-269.
Article
PubMed
Google Scholar
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell. 2005, 120: 635-647.
Article
PubMed
CAS
Google Scholar
Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H, Kasuya M, Ogawa Y, Sato K, Kimura K, Homma Y, Hirata Y, Fujita T: miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One. 2010, 5: e13614-
Article
PubMed
PubMed Central
Google Scholar
Hayashida Y, Nishibu T, Inoue K, Kurokawa T: A useful approach to total analysis of RISC-associated RNA. BMC Research Notes. 2009, 2: 169-
Article
PubMed
PubMed Central
Google Scholar
Yan X, Liang H, Deng T, Zhu K, Zhang S, Wang N, Jiang X, Wang X, Liu R, Zen K, Zhang CY, Ba Y, Chen X: The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells. Mol Cancer. 2013, 12: 92-
Article
PubMed
CAS
PubMed Central
Google Scholar
Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283: 14910-14914.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1and SIP1. Nature cell biology. 2008, 10: 593-601.
Article
PubMed
CAS
Google Scholar
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105.
Article
PubMed
CAS
PubMed Central
Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human microRNA targets. PLoS Biol. 2004, 2: e363-
Article
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: MiRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-D158.
Article
PubMed
CAS
PubMed Central
Google Scholar
Long JM, Lahiri DKML: MicroRNA-101 downregulates Alzheimer’s amyloid-beta protein levels in human cell cultures and is differentially expressed. Biochem Biophs Res Commun. 2011, 404: 889-895.
Article
CAS
Google Scholar
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008, 68: 7846-7854.
Article
PubMed
CAS
Google Scholar
Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic implication of microRNA profiling in prostate carcinoma. Int J Cancer. 2010, 126: 1166-1176.
PubMed
CAS
Google Scholar
Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH, Länger F: Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer. 2010, 10: 109-
Article
PubMed
PubMed Central
Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Snader C: The microRNA.org resource targets and exression. 2008. Nucleic Acids Res. 2008, 36: D149-D153.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20.
Article
PubMed
CAS
Google Scholar
Friedman RC, Farth KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19: 92-105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky N: A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006, 16: 460-471.
Article
PubMed
CAS
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217.
Article
PubMed
CAS
Google Scholar
Kruger J, Rehmsmeier M: RNA hybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34: W451-W454.
Article
PubMed
PubMed Central
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of the site accessibility in microRNAs target recognition. Nat Genet. 2007, 39: 1278-1284.
Article
PubMed
CAS
Google Scholar
Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M: Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinforma. 2007, 8: 69-
Article
Google Scholar
Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG: Accurate microRNAs target prediction correlates with protein repression levels. BMC Bioinforma. 2009, 10: 295-
Article
Google Scholar