Briggs DE, Boulton C, Brookes PA, Stevens R: Brewing: science and practice. In Brewing: science and practice. 2004, Oxford, UK: Taylor and Francis
Google Scholar
D’Amore T, Panchal CJ, Russell I, Stewart GG: A study of ethanol tolerance in yeast. Crit Rev Biotechnol. 1990, 9 (4): 287-304.
Article
PubMed
Google Scholar
Quain CBD: Brewing Yeast and Fermentation. 2006, Oxford, UK: Blackwell publishing, Wiley-Blackwell
Google Scholar
Cardona F, Carrasco P, Perez-Ortin JE, del Olmo MI, Aranda A: A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 2007, 114 (1): 83-91. 10.1016/j.ijfoodmicro.2006.10.043.
Article
PubMed
CAS
Google Scholar
Casey GP, Ingledew WM: Ethanol tolerance in yeasts. Crit Rev Microbiol. 1986, 13 (3): 219-280. 10.3109/10408418609108739.
Article
PubMed
CAS
Google Scholar
Petrov VV, Okorokov LA: Increase of the anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization. Yeast. 1990, 6 (4): 311-318. 10.1002/yea.320060404.
Article
PubMed
CAS
Google Scholar
Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC: Relationship between ethanol tolerance, H + -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol. 2006, 110 (1): 34-42. 10.1016/j.ijfoodmicro.2006.02.002.
Article
PubMed
CAS
Google Scholar
Lorenz RT, Parks LW: Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. Lipids. 1991, 26 (8): 598-603. 10.1007/BF02536423.
Article
PubMed
CAS
Google Scholar
Gutteridge JM, Halliwell B: The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci. 1990, 15 (4): 129-135. 10.1016/0968-0004(90)90206-Q.
Article
PubMed
CAS
Google Scholar
Vivancos AP, Jara M, Zuin A, Sanso M, Hidalgo E: Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics. 2006, 276 (6): 495-502. 10.1007/s00438-006-0175-z.
Article
PubMed
CAS
Google Scholar
Yang MH, Schaich KM: Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radic Biol Med. 1996, 20 (2): 225-236. 10.1016/0891-5849(95)02039-X.
Article
PubMed
CAS
Google Scholar
O’Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS: Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol. 2002, 22 (12): 4086-4093. 10.1128/MCB.22.12.4086-4093.2002.
Article
PubMed
PubMed Central
Google Scholar
Doudican NA, Song B, Shadel GS, Doetch PW: Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol. 2005, 25 (12): 5196-5204. 10.1128/MCB.25.12.5196-5204.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gibson BR, Prescott KA, Smart KA: Petite mutation in aged and oxidatively stressed ale and lager brewing yeast. Lett Appl Microbiol. 2008, 46 (6): 636-642. 10.1111/j.1472-765X.2008.02360.x.
Article
PubMed
CAS
Google Scholar
Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW: Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5 (12): 1215-1228. 10.1016/j.femsyr.2005.06.001.
Article
PubMed
CAS
Google Scholar
Barker MG, Walmsley RM: Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast. 1999, 15 (14): 1511-1518. 10.1002/(SICI)1097-0061(199910)15:14<1511::AID-YEA482>3.0.CO;2-Y.
Article
PubMed
CAS
Google Scholar
Van Zandycke SM, Sohier PJ, Smart KA: The impact of catalase expression on the replicative lifespan of Saccharomyces cerevisiae. Mech Ageing Dev. 2002, 123 (4): 365-373. 10.1016/S0047-6374(01)00382-7.
Article
PubMed
CAS
Google Scholar
Powell CD, Van Zandycke SM, Quain DE, Swart KA: Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. Microbiology. 2000, 146 (Pt 5): 1023-1034.
Article
PubMed
CAS
Google Scholar
Iwai K, Naganuma A, Kuge S: Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. J Biol Chem. 2010, 285 (14): 10597-10604. 10.1074/jbc.M109.090142.
Article
PubMed
CAS
PubMed Central
Google Scholar
Esterbauer H: Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr. 1993, 57 (5 Suppl): 779S-785S. discussion 785S-786S
PubMed
CAS
Google Scholar
Girotti AW: Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998, 39 (8): 1529-1542.
PubMed
CAS
Google Scholar
Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB: Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 1999, 274 (23): 16040-16046. 10.1074/jbc.274.23.16040.
Article
PubMed
CAS
Google Scholar
Costa V, Amorim MA, Resi E, Quintanilha A, Moradas-Ferreira P: Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology. 1997, 143 (Pt 5): 1649-1656.
Article
PubMed
CAS
Google Scholar
Trotter EW, Grant CM: Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot Cell. 2005, 4 (2): 392-400. 10.1128/EC.4.2.392-400.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grant CM, MacIver FH, Dawes IW: Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet. 1996, 29 (6): 511-515. 10.1007/BF02426954.
Article
PubMed
CAS
Google Scholar
Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD: Protective effects of vitamins and selenium compounds in yeast. Mutat Res. 2001, 496 (1–2): 105-115.
Article
PubMed
CAS
Google Scholar
Clarkson SP, Large PJ, Boulton CA, Bamforth CW: Synthesis of superoxide dismutase, catalase and other enzymes and oxygen and superoxide toxicity during changes in oxygen concentration in cultures of brewing yeast. Yeast. 1991, 7 (2): 91-103. 10.1002/yea.320070203.
Article
CAS
Google Scholar
Madhavan A, Srivastava A, Kondo A, Bisaria VS: Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol. 2012, 32 (1): 22-48. 10.3109/07388551.2010.539551.
Article
PubMed
CAS
Google Scholar
Attfield PV, Bell PJ: Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res. 2006, 6 (6): 862-868. 10.1111/j.1567-1364.2006.00098.x.
Article
PubMed
CAS
Google Scholar
Toivola A, Yarrow D, van den Bosche E, van Dijken JP, Scheffers WA: Alcoholic Fermentation of d-Xylose by Yeasts. Appl Environ Microbiol. 1984, 47 (6): 1221-1223.
PubMed
CAS
PubMed Central
Google Scholar
Grant CM, Perrone G, Dawes IW: Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1998, 253 (3): 893-898. 10.1006/bbrc.1998.9864.
Article
PubMed
CAS
Google Scholar
Poljak A, Dawes IW, Ingelse BA, Duncan MW, Smythe GA, Grant CM: Oxidative damage to proteins in yeast cells exposed to adaptive levels of H(2)O(2). Redox Rep. 2003, 8 (6): 371-377. 10.1179/135100003225003401.
Article
PubMed
CAS
Google Scholar
Evans MV, Turton HE, Grant CM, Dawes IW: Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol. 1998, 180 (3): 483-490.
PubMed
CAS
PubMed Central
Google Scholar
Guimaraes AJ, Hamilton AL, de M Guesdes HL, Nosanchuk JD, Zancope-Oliveira RM: Biological function and molecular mapping of M antigen in yeast phase of Histoplasma capsulatum. PLoS One. 2008, 3 (10): e3449-10.1371/journal.pone.0003449.
Article
PubMed
PubMed Central
Google Scholar
Pereira FB, Guimaraes PM, Gomes DG, Mira NP, Teixeira MC, Sa-Correja I, Domingues L: Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels. 2011, 4 (1): 57-10.1186/1754-6834-4-57.
Article
PubMed
CAS
PubMed Central
Google Scholar
Feng X, Zhao H: Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnol Biofuels. 2013, 6 (1): 96-10.1186/1754-6834-6-96.
Article
PubMed
CAS
PubMed Central
Google Scholar
Montanti J, Nghiem NP, Johnston DB: Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Appl Biochem Biotechnol. 2011, 164 (5): 655-665. 10.1007/s12010-011-9165-7.
Article
PubMed
CAS
Google Scholar
Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA: Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 2007, 31 (5): 535-569. 10.1111/j.1574-6976.2007.00076.x.
Article
PubMed
CAS
Google Scholar
Bayliak M, Semchyshyn H, Lushchak V: Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomyces cerevisiae is strain-specific. Biochemistry (Mosc). 2006, 71 (9): 1013-1020. 10.1134/S0006297906090100.
Article
CAS
Google Scholar
Semchyshyn H, Bagnyukova T, Lushchak V: Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide. Biochemistry (Mosc). 2005, 70 (11): 1238-1244. 10.1007/s10541-005-0253-6.
Article
CAS
Google Scholar
Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M: ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007, 66 (3): 571-582. 10.1111/j.1365-2958.2007.05926.x.
Article
PubMed
CAS
Google Scholar
Laco J, Zeman I, Pevala V, Polcic P, Kolorov J: Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier. FEMS Yeast Res. 2010, 10 (3): 290-296. 10.1111/j.1567-1364.2010.00606.x.
Article
PubMed
CAS
Google Scholar
Zha J, Shen M, Hu M, Song H, Yuan Y: Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol. 2014, 41 (1): 27-39. 10.1007/s10295-013-1350-y.
Article
PubMed
CAS
Google Scholar
Yalcinkaya S, Unlucerci Y, Giris M, Olgac V, Dogru-Abbasoglu S, Ulysal M: Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. Nutrition. 2009, 25 (4): 436-444. 10.1016/j.nut.2008.09.017.
Article
PubMed
CAS
Google Scholar
Gomez J, Caro P, Sanchez I, Naudi A, Jove M, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G: Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr. 2009, 41 (3): 309-321. 10.1007/s10863-009-9229-3.
Article
PubMed
CAS
Google Scholar
Avery SV, Howlett NG, Radice S: Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol. 1996, 62 (11): 3960-3966.
PubMed
CAS
PubMed Central
Google Scholar