Kovach MJ, Sweeney T, McCouch SR. New insights into the history of rice domestication. Trends Genet. 2007;23:578–87.
Article
CAS
PubMed
Google Scholar
Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA. 2001;108:11034–9.
Article
Google Scholar
Kasajima I, Ebana K, Yamamoto T, Takahara K, Yano M, Kawai-Yamada M, Uchimiya H. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc Natl Acad Sci USA. 2011;108:13835–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estudillo JP, Otsuka K. Lessons from the Asian Green Revolution in Rice. In: Otsuka K, Larson DF, editors. An African Green Revolution: Finding Ways to Boost Productivity on Small Farms. New York: Springer; 2013. p. 17–41.
Chapter
Google Scholar
Lin KC, Jwo WS, Chandrika NNP, Wu TM, Lai MH, Wang CS, Hong CY. A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biol Plant. 2016;60:86–94.
Article
CAS
Google Scholar
Pandey P, Srivastava RK, Rajpoot R, Rani A, Pandey AK, Dubey RS. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance. Envorion Sci Pollut Res. 2016;23:1516–28.
Article
CAS
Google Scholar
Rachoski M, Gazquez A, Calzadilla P, Bezus R, Rodriguez A, Ruiz O, Menendez A, Maiale S. Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiol Plant. 2015;37:117.
Article
Google Scholar
Xu K, Chun S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol. 2015;15:141.
Article
PubMed
PubMed Central
Google Scholar
Printó-Marijuan M, Munné-Bosch S. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot. 2014;65:3845–57.
Article
Google Scholar
Takahashi S, Badger MR. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60.
Article
CAS
PubMed
Google Scholar
Demidchik V. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot. 2015;109:212–28.
Article
CAS
Google Scholar
Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M. Development of an RFLP-based rice diversity research set of germplasm. Breed Sci. 2005;55:431–40.
Article
CAS
Google Scholar
Takahara K, Kasajima I, Takahashi H, Hashida SN, Itami T, Onodera H, Toki S, Yanagisawa S, Kawai-Yamada M, Uchimiya H. Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. Plant Physiol. 2010;152:1863–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasajima I, Takahara K, Kawai-Yamada M, Uchimiya H. Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. Plant Cell Physiol. 2009;50:1600–16.
Article
CAS
PubMed
Google Scholar
Kasajima I, Suetsugu N, Wada M, Takahara K. Collective calculation of actual values of non-photochemical quenching from their apparent values after chloroplast movement and photoinhibition. Am J Plant Sci. 2015;6:1792–805.
Article
CAS
Google Scholar
Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta. 1989;975:384–94.
Article
CAS
Google Scholar
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002;29:475–86.
Article
CAS
PubMed
Google Scholar
Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice. Nature. 2007;448:209–12.
Article
CAS
PubMed
Google Scholar
Kitajima K, Hogan KP. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell Environ. 2003;26:857–65.
Article
Google Scholar
Heldt HW. The use of energy from sunlight by photosynthesis is the basis of life on earth. In: Biochemistry Plant, editor. 3rd edition. Amsterdam: Elsevier; 2005. p. 45–66.
Google Scholar
Kasajima I, Sasaki K. Dichromatism causes color variations in leaves and spices. Color Res Appl. 2015;40:605–11.
Article
Google Scholar
Cazzaniga S, Dall’Osto L, Kong SG, Wada M, Bassi R. Interaction between avoidance of photon absorption excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 2013;76:568–79.
Article
CAS
PubMed
Google Scholar
Iseki K, Homma K, Endo T, Shiraiwa T. Genotypic diversity of cross-tolerance to oxidative and drought stresses in rice seedlings evaluated by the maximum quantum yield of photosystem II and membrane stability. Plant Prod Sci. 2013;16:295–304.
Article
CAS
Google Scholar
Caverzan A, Bonifacio A, Carvalho FEL, Andrade CMB, Passaia G, Schünemann M, Maraschin FDS, Martins MO, Teixeira FK, Rauber R, Margis R, Silveira JAG, Margis-Pinheiro M. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci. 2014;214:74–87.
Article
CAS
PubMed
Google Scholar
Huang XS, Wang W, Zhang Q, Liu JH. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013;162:1178–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol. 2012;53:1596–606.
Article
CAS
PubMed
Google Scholar
Xu S, Wang L, Zhang B, Han B, Xie Y, Yang J, Zhong W, Chen H, Wang R, Wang N, Cui W, Shen W. RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol. 2012;80:219–35.
Article
CAS
PubMed
Google Scholar
Levesque-Tremblay G, Havaux M, Ouellet F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 2009;60:691–702.
Article
CAS
PubMed
Google Scholar
Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol. 2009;69:577–92.
Article
CAS
PubMed
Google Scholar
Charron JBF, Ouellet F, Houde M, Sarhan F. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol. 2008;8:86.
Article
PubMed
PubMed Central
Google Scholar
Tarantino D, Vannini C, Bracale M, Campa M, Soave C, Murgia I. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances Paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta. 2005;221:757–65.
Article
CAS
PubMed
Google Scholar
Martin M, Casano LM, Zapata JM, Guéra A, Del Campo EM, Schmitz-Linneweber C, Maier RM, Sabater B. Role of thylakoid Ndh complex and peroxidase in the protection against photo-oxidative stress: fluorescence and enzyme activities in wild-type and ndhF-deficient tobacco. Physiol Plant. 2004;122:443–52.
Article
CAS
Google Scholar
Zulfugarov I, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH. Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biol. 2014;14:242.
Article
PubMed
PubMed Central
Google Scholar
Dalal A, Kumar A, Yadav D, Gudla T, Viehhauser A, Dietz KJ, Kirti PB. Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Sci. 2014;219–20:9–18.
Article
Google Scholar
Seong ES, Yoo JH, Kim NJ, Choi JH, Lee JG, Ghimire BK, Chung IM, Yu CY. Morphological changes and increase of resistance to oxidative stress by overexpression of the LebZIP2 gene in Nicotiana benthamiana. Russ J Plant Physiol. 2016;63:124–31.
Article
CAS
Google Scholar
Kim JG, Back K, Lee HY, Lee HJ, Phung TH, Grimm B, Jung S. Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Mol Biol. 2014;86:271–87.
Article
CAS
PubMed
Google Scholar
Li CW, Lee SH, Chieh PS, Lin CS, Wang YC, Chan MT. Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant Cell Physiol. 2012;53:1707–19.
Article
CAS
PubMed
Google Scholar
Kim MD, Kim YH, Kwon SY, Jang BY, Lee SY, Yun DJ, Cho JH, Kwak SS, Lee HS. Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiol Biochem. 2011;49:891–7.
Article
CAS
PubMed
Google Scholar
Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotehchnol J. 2011;9:334–47.
Article
CAS
Google Scholar
Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H. An h-type thioredoxin functions in tobacco defense responses to two species of virus and an abiotic oxidative stress. Mol Plant Microbe In. 2010;23:1470–85.
Article
CAS
Google Scholar
Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant. 2010;140:153–62.
Article
CAS
PubMed
Google Scholar
Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW. Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant. 2010;139:421–34.
CAS
PubMed
Google Scholar
Ahmad R, Kim YH, Kim MD, Kwon SY, Cho K, Lee HS, Kwak SS. Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant. 2010;138:520–33.
Article
CAS
PubMed
Google Scholar
Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S. Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J. 2009;57:289–301.
Article
CAS
PubMed
Google Scholar
Luhua S, Ciftci-Yilmaz S, Harper J, Cushman J, Mittler R. Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiol. 2008;148:280–92.
Article
PubMed
PubMed Central
Google Scholar
Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 2004;37:21–33.
Article
CAS
PubMed
Google Scholar
Mohamed EA, Iwaki T, Munir I, Tamoi M, Shigeoka S, Wadano A. Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance. Plant, Cell Environ. 2003;26:2037–46.
Article
CAS
Google Scholar
Sunkar R, Bartels D, Kirch HH. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 2003;35:452–64.
Article
CAS
PubMed
Google Scholar
Gupta AA, Heinen JL, Holaday AS, Burke JJ, Allen RD. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA. 1993;90:1629–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimura K, Ogawa T, Tsujimura M, Ishikawa K, Shigeoka S. Ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Cell Physiol. 2014;55:1534–43.
Article
CAS
PubMed
Google Scholar
Jeon H, Jin YM, Choi MH, Lee H, Kim M. Chloroplast-targeted bacterial RecA proteins confer tolerance to chloroplast DNA damage by methyl viologen or UV-C radiation in tobacco (Nicotiana tabacum) plants. Physiol Plant. 2013;147:218–33.
Article
CAS
PubMed
Google Scholar
Ceccoli RD, Blanco NE, Segretin ME, Melzer M, Hanke GT, Scheibe R, Hajirezaei MR, Bravo-Almonacid FF, Carrillo N. Flavodoxin displays dose-dependent effects on photosynthesis and stress tolerance when expressed in transgenic tobacco plants. Planta. 2012;236:1447–58.
Article
CAS
PubMed
Google Scholar
Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J. 2011;9:661–73.
Article
PubMed
Google Scholar
Poage M, Le Martret B, Jansen MAK, Nugent GD, Dix PJ. Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol. 2011;76:371–84.
Article
CAS
PubMed
Google Scholar
Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N. Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol. 2017;143:639–49.
Article
Google Scholar
Mugia I, Terantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. 2004;38:940–53.
Article
Google Scholar
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant, Cell Environ. 2015;38:349–63.
Article
CAS
Google Scholar
Wang L, Ma F, Xu S, Zheng T, Wang R, Chen H, Shen W. Cloning and characterization of a heme oxygenase-2 gene from rice (Oryza sativa L.), and its expression analysis in response to some abiotic stresses. Acta Physiol Plant. 2014;36:893–902.
Article
CAS
Google Scholar
Ramírez M, Guillén G, Fuentes SI, Íñiguez LP, Aparicio-Fabre R, Zamorano-Sánchez D, Encarnacion-Guevara S, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G. Transcript profiling of common bean nodules subjected to oxidative stress. Physiol Plant. 2013;149:389–407.
PubMed
Google Scholar
Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R, Moran JF. Expression and localization of a Rhyzobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress. Mol Plant Microbe In. 2011;24:1247–57.
Article
CAS
Google Scholar
Shevyakova NI, Eshinimaeva BT, Kuznetsov VV. Expression of ferritin gene in Mesembryanthemum crystallinum plants under different supply with iron and different intensity of oxidative stress. Russ J Plant Physiol. 2011;58:768–75.
Article
CAS
Google Scholar
Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta. 2009;229:1009–14.
Article
CAS
PubMed
Google Scholar
Radyukina NL, Shashukova AV, Shevyakova NI, Kuznetsov VV. Proline involvement in the common sage antioxidant system in the presence of NaCl and paraquat. Russ. J Plant Physiol. 2008;55:649–56.
CAS
Google Scholar
Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 2004;40:909–19.
Article
CAS
PubMed
Google Scholar
Liu W, An HM, Yang M. Overexpression of Rosa roxburghii
l-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant. 2013;35:1617–24.
Article
CAS
Google Scholar
Raschke M, Boycheva S, Crevecoeur M, Nunes-Nesi A, Witt S, Fernie AR, Amrhein N, Fitzpatrick TB. Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J. 2011;66:414–32.
Article
CAS
PubMed
Google Scholar
Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep. 2011;30:389–98.
Article
CAS
PubMed
Google Scholar
Wang Z, Xiao Y, Chen W, Tang K, Zhang L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol. 2010;52:400–9.
Article
CAS
PubMed
Google Scholar
Shevyakova NI, Bakulina EA, Kuznetsov VV. Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ J Plant Physiol. 2009;56:663–9.
Article
CAS
Google Scholar
Pang CH, Wang BS. Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MT, Umar S, editors. Ascorbate-glutathione pathway and stress tolerance in plants. New York: Springer; 2010. p. 91–113.
Chapter
Google Scholar
Beikoku Antei Kyoukyuu Kakuho Shien Kikou (Institute for stable supply and storage supports of rice, Japan). Heisei 26 Nensan Suitou No Hinshubetsu Sakutsuke Doukou Ni Tsuite (About planting of paddy rice in 2014). 2015. http://www.komenet.jp/pdf/H26sakutuke.pdf. Accessed 20 Mar 2016. (Japanese).
Xu J, Duan X, Yang J, Beeching JR, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol. 2013;161:1517–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui Z, Tian FX, Wang G, Wang GP, Wang W. The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep. 2012;31:1073–84.
Article
CAS
PubMed
Google Scholar
Arking R. Molecular basis of extended longevity in selected Drosophila strains. Curr Sci. 1998;74:859–64.
CAS
Google Scholar