Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S. Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2015;55(7):939–54.
Article
CAS
PubMed
Google Scholar
Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des. 2013;19(34):6141–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu Majumder A, Bera B, Rajan A. Tea statistics: global scenario. Inc J Tea Sci. 2010;8(1):121–4.
Google Scholar
Carloni P, Tiano L, Padella L, Bacchetti T, Customu C, Kay A, et al. Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res Int. 2013;53(2):900–8.
Article
CAS
Google Scholar
Bang H, Kim S, Leskovar D, King S. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Mol Breed. 2007;20(1):63–72.
Article
CAS
Google Scholar
Morgante M, Olivieri A. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993;3(1):175–82.
Article
CAS
PubMed
Google Scholar
Roychowdhury R, Taoutaou A, Hakeem KR, Gawwad MRA, Tah J. Molecular marker-assisted technologies for crop improvement. In: Roychowdhury R, ed. Crop improvement in the era of climate change; 2013: p. 241–58.
Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M. Current knowledge in lentil genomics and its application for crop improvement. In: Kumar S, editor. Crop breeding: bioinformatics and preparing for climate change. USA: CRC Press; 2016. p. 309–27.
Chapter
Google Scholar
Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 2005;23(1):48–55.
Article
CAS
PubMed
Google Scholar
Singh RB, Srivastava S, Rastogi J, Gupta GN, Tiwari NN, Singh B, et al. Molecular markers exploited in crop improvement practices. Res Environ Life Sci. 2014;7(4):223–32.
Google Scholar
Kesawat MS, Kumar BD. Molecular markers: it’s application in crop improvement. J Crop Sci Biotechnol. 2009;12(4):169–81.
Article
Google Scholar
Wang X, Gui S, Pan L, Hu J, Ding Y. Development and characterization of polymorphic microRNA-based microsatellite markers in Nelumbo nucifera (Nelumbonaceae). Appl Plant Sci. 2016;4(1):1500091.
Article
Google Scholar
Nithin C, Patwa N, Thomas A, Bahadur RP, Basak J. Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures. BMC Plant Biol. 2015;15(1):140.
Article
PubMed
PubMed Central
Google Scholar
Ganie SA, Mondal TK. Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications. Mol Breed. 2015;35(1):51.
Article
Google Scholar
Mondal TK, Ganie SA. Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene. 2014;535(2):204–9.
Article
CAS
PubMed
Google Scholar
Großhans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008;451(7177):414–6.
Article
PubMed
Google Scholar
Fondon JW, Garner HR. Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci. 2004;101(52):18058–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 2006;22(5):253–9.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep. 2016;35(2):255–87.
Article
CAS
PubMed
Google Scholar
Elangbam M, Misra A. Development of CAPS markers to identify Indian tea (Camellia sinensis) clones with high catechin content. Genet Mol Res. 2016;15(2):1–13.
Article
CAS
Google Scholar
Prabu G, Mandal A. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genom Proteom Bioinform. 2010;8(2):113–21.
Article
CAS
Google Scholar
Das A, Mondal TK. Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). Am J Plant Sci. 2010;1(02):77.
Article
CAS
Google Scholar
Q-w Zhu, Y-p Luo. Identification of miRNAs and their targets in tea (Camellia sinensis). J Zhejiang Univ Sci B. 2013;14(10):916–23.
Article
Google Scholar
Zhang B, Pan X, Anderson TA. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett. 2006;580(15):3753–62.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(suppl 1):D154–8.
CAS
PubMed
Google Scholar
Boguski MS, Lowe TM, Tolstoshev CM. dbEST—database for “expressed sequence tags”. Nat Genet. 1993;4(4):332–3.
Article
CAS
PubMed
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA genes. Plant J. 2006;46(2):243–59.
Article
CAS
PubMed
Google Scholar
Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, et al. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). Plant Signal Behav. 2014;9(9):e29462.
Article
PubMed Central
Google Scholar
Zhang B, Pan X, Cox S, Cobb G, Anderson T. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63(2):246–54.
Article
CAS
PubMed
Google Scholar
Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39(suppl 2):W155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins WS, Lucas DCS. Neves KdS, Bertioli DJ. WebSat—a web software for microsatellite marker development. Bioinformation. 2009;3(6):282–3.
Article
PubMed
PubMed Central
Google Scholar
You FM, Huo N, Gu YQ, M-c Luo, Ma Y, Hane D, et al. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform. 2008;9(1):253.
Article
Google Scholar
Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC 1 population between Gossypium hirsutum and G. barbadense. BMC Genom. 2011;12(1):15.
Article
CAS
Google Scholar
Weber MJ. New human and mouse microRNA genes found by homology search. FEBS J. 2005;272(1):59–73.
Article
CAS
PubMed
Google Scholar
Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA. 2004;101(34):12753–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene. 2016;6:82–9.
Article
CAS
Google Scholar
Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Mol Biotechnol. 2013;53(3):257–69.
Article
CAS
PubMed
Google Scholar
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004;20(17):2911–7.
Article
CAS
PubMed
Google Scholar
Zhang BH, Pan XP, Wang QL, George PC, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 2005;15(5):336–60.
Article
PubMed
Google Scholar
Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-induced microRNA and their targets in wheat using computational approach. Plant Signal Behav. 2013;8(5):e23932.
Article
PubMed
PubMed Central
Google Scholar
Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet. 2006;38:S31–6.
Article
CAS
PubMed
Google Scholar
Wang X-J, Reyes JL, Chua N-H, Gaasterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 2004;5(9):R65.
Article
PubMed
PubMed Central
Google Scholar
Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Develop. 2009;25:21–44.
Article
Google Scholar
Chen R, Hu Z, Zhang H. Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol. 2009;51(12):1071–9.
Article
CAS
PubMed
Google Scholar
Zhang B, Pan X, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Develop Biol. 2006;289(1):3–16.
Article
CAS
PubMed
Google Scholar
Chen M, Tan Z, Zeng G, Peng J. Comprehensive analysis of simple sequence repeats in pre-miRNAs. Mol Biol Evol. 2010;27(10):2227–32.
Article
CAS
PubMed
Google Scholar
Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, et al. SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet. 2008;117(7):1021–9.
Article
CAS
PubMed
Google Scholar
Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol. 2001;18(7):1161–7.
Article
CAS
PubMed
Google Scholar