This was a hospital-based chart review of malaria confirmatory laboratory test results of patients, to determine the impact of mass distribution of LLITN on the hospital prevalence of malaria, and malaria parasitaemia in the BHD. Our study determined the prevalence of malaria at 20.5% (19.9–21.1) and the mean trophozoite count was 2735.3 ± 23,323.5 trophozoite/µl of blood. The most affected were; Children below 5 years (28.4%) and those in the “school-age group” (29.3%). We observed a constant variation in the monthly and yearly malaria prevalence and parasitaemia over the 3-year study period, as shown on Table 4 and on Fig. 1. We found that prevalence of malaria increased in 2013 compared to 2011 in the general population of study, while there was a decrease in malaria prevalence in children under five in 2012, and an increase in prevalence in 2013.
Despite the achievement of a universal coverage (91%) with LLITN in the BHD, the hospital prevalence of malaria and parasitaemia was still unacceptably high. This prevalence was twice as high as the national prevalence in 2013 [13]. A community based study conducted in 2006 showed about a twofold higher prevalence [9], than the prevalence obtained in this study. The difference in values of the prevalence obtained in the community-based study compared to this study could possibly be explained by the absence of free mass distribution of LLITN in 2006, and by the difference in study methods (community based and review of hospital records). In addition, from 2006 to 2013, there was an increase in the intermittent preventive treatment and prenatal consultations, as well as general community education on malaria preventive measure. Other studies in different regions of the country have obtained different prevalence values [14, 15] but these studies were house hold surveys and based their findings on the results obtained from rapid diagnostic test, recorded as ++…., This observation supports the fact that malaria prevalence varies significantly from one eco-geographical zone to another across the country [16]. However, our study had similar results to a community based study in a locality in Nigeria [17].
Our study demonstrated that malaria prevalence varies significantly with regards to time, age, and gender. We observed constant fluctuations in prevalence from 1 month to another (Fig. 1) and between the years, with a much higher prevalence in 2013 compared to each of 2011 and 2012. The highest prevalence in 2013 occurred in May, in March for 2011 and in November for 2012. These are periods of the year that mark the start, middle and the end of the rainy seasons. We also observe the lowest prevalence in the months of May for 2011, August for 2012 and February for 2013. In this study, the seasonal variation in the prevalence of malaria in the BHD demonstrated a significantly difference from the trends demonstrated in other studies across the country [18,19,20]. This can be explained by the fact that the other studies were conducted prior to the mass distribution of LLITN. Thus, the seasonal pattern in prevalence recorded in this study may have been influenced by the presence of the LLITN, given that mass distribution was in the month of December 2011.
Prevalence and parasitaemia were significantly higher in males than in females (p < 0.01). Several studies in other sub-Saharan African countries have shown similar results [18,19,20]. This is mostly because women are more likely to use bed nets than males [21] and some women (pregnant) also benefit from the free intermittent preventive treatment offered in health facilities. The most affected age groups were “school-age group” (6–14 years) and children below 5 years old. This is in line with the finding that those in the “school-age group” are the least likely group to use LLITN [21, 22]. This additionally explains why the prevalence was higher in this group than in children below five [23] who are generally followed up by their mothers to ensure that they sleep under bed nets.
There was enough evidence to suggest that the mass distribution of LLITN contributed to reducing the hospital-based prevalence of malaria in children under 5 years in 2012, just about a year following the implementation of the program. This supports the results of other studies that have demonstrated that the proper use of LLITN significantly reduces malaria morbidity and mortality [9, 24,25,26]. There was also a reduction in the prevalence of malaria in the total population reviewed, 1 year after the implementation of the mass distribution of LLITN program. However, we observed an unexpected increase in the prevalence of malaria in both the general population and in children under 5 years during the second year following the mass distribution of LLITN. The mean parasitaemia had changed in both general population and in children below 5 years old, for both the first and second year. The regular and proper use of LLITN has been proven to have significant impact in the reduction of malaria transmission and malaria burden [8]. This boosts the fact that, in spite achieving a universal coverage with mass distribution of LLITN, the regular and proper use is indispensable for an effective prevention and control. From our results, we believe that the regular and correct use of LLITN by the population was effective within the first few months after receiving the bed nets. However, it is likely that the rate of regular and correct usage reduced significantly over time. In addition, the distribution of LLITNs is supposed to be followed-up with drills of proper mounting of the nets and post distribution campaigns to encourage the population to use the nets effectively. These drills were lacking in this campaign. These may explain why there was an unexpected increase in the prevalence of malaria 2 years following distribution of LLITN. This is supported by results of a study that demonstrated that the rate of use of LLITN by populations significantly reduces with time, far below the levels required to create significant impact on the burden of malaria [27].
Limitations
Test results relied on the technical capacity of the laboratory personnel to identify and count trophozoite and document correct test results. We did not assess their experience and technical capacity. Secondly, only patients with presumptive diagnosis of malaria, who were referred for laboratory confirmation, were included. Those who were asymptomatic and those who had self-treatment for malarial symptoms were not included in the study. Thirdly, some health facilities in the district were excluded because they failed to quantify the parasitaemia, for example, by recording results as number of “pluses” (++…), following the use of the rapid diagnostic test method. This is not the recommended method of testing. However, these health facilities cover only a small percentage of the BHD population. Therefore, the results obtained in this study are not a perfect representation of the community-based prevalence in the entire Buea Health District and should be interpreted with the above considerations.