Skip to content

Advertisement

Open Access

Seroprevalence and determinants of transfusion transmissible infections among voluntary blood donors in Homabay, Kisumu and Siaya counties in western Kenya

BMC Research Notes201811:171

https://doi.org/10.1186/s13104-018-3276-y

Received: 27 December 2017

Accepted: 7 March 2018

Published: 12 March 2018

Abstract

Objective

Since the implementation of a series of blood donation safety improvements in Kenya, information about seroprevalence and determinants of transfusion transmissible infections among voluntary blood donors especially in high HIV burden regions of Homabay, Kisumu and Siaya counties remain scanty. A cross-sectional study examining HIV, syphilis, hepatitis B and C virus sero-markers and associated determinants was conducted among voluntary blood donors. Their demographic characteristics and previous risk exposure were recorded in a pre-donation questionnaire, while blood samples collected were screened for hepatitis B, hepatitis C, human immunodeficiency viruses by ELISA and RPR (syphilis), then confirmed using CMIA.

Results

Overall TTIs seroprevalence was 114 (9.4%), distributed among HIV, HBV, HCV and syphilis at 14 (1.15%), 42 (3.46%), 39 (3.21%) and 19 (1.56%), respectively, with co-infections of 3 (0.25%). There were no significant differences in proportions distributions among demographic variables. However, high risk sex was significantly associated with higher odds of HBV infections [> 1 partner vs. 0–1 partner; odd ratio (OR) 2.60; 95% confidence interval (CI) 1.098–6.86; p = 0.046]. In conclusion, a substantial percentage of blood donors still harbor transfusion transmissible infections despite recent safety improvements with greater majority cases caused by HBV infections arising from previous exposure to high risk sex.

Keywords

SeroprevalenceHIVHBVDonorsKenya

Introduction

Transfusion transmissible infections especially human immunodeficiency virus and hepatitis viruses, are a constant threat to blood safety for the recipient, and more endemic in Africa, thus making donors in this region vulnerable to risk of exposure [1]. Moreover, co-infection is also common due to similar routes of transmission [2], with prevalence varying with time and regions [3]. Infections with HIV compromises immunological status of a person, hepatitis B and C viral infections cause liver cirrhosis and hepatocellular carcinoma while infections with syphilis results in neonatal mortality [4]; thus, high quality screening for the four major TTIs have become mandatory and irreducible minimum that must be tested in all blood donations to achieve safety threshold [5].

Globally, about 1.6 million blood units are destroyed annually owing to TTIs seropositivity [5], with 10% discarded in sub-Saharan Africa [6]. In the neighbouring Democratic Republic of Congo (DRC), risk of transfusion-transmitted HIV, HBV and HCV was estimated at 0.6, 7.9 and 3.1 infections per 1000 donations, respectively [7]. Here in Kenya, an estimated risk of transfusion-transmitted HIV was reported at 2% [8]. Moreover, despite of recent blood donation safety improvements such as stringent pre-donation screening, enhanced haemovigilance through e-progesa blood computerized system (BECs) and implementation of fourth generation p24 antigen and HIV antibody screening assays [9], a substantial amount of blood units estimated at 5.26%, are still discarded annually owing to TTIs seropositivity [10]. Furthermore, HIV, HBV, HCV and syphilis seropositive blood discards estimated at 2.6, 3.9, 2.2 and 0.5%, respectively, were reported earlier in Kisumu region under Kenya national blood transfusion services (KNBTS) covering Homabay, Kisumu and Siaya counties in western Kenya [11]. The three counties experience the greatest burden of HIV and other co-infections in the region [12], but also serve as a major blood basket supplying most hospital in the region based on their proximity to regional blood donor center of Kisumu and ease for transport during donations. To date, there is no published data on blood donation safety assessment following recent safety improvements.

Socio-demographic characteristics influence the distribution of TTIs among blood donors. In Kenya, national blood transfusion services (NBTS) rely mainly on young voluntary blood donors, particularly secondary schools, colleges and University students, majority in the age range of 15–24 years [13]. Blood donations from school students are preferred over adult donors owing to lower HIV prevalence estimated at 1% compared to 6.6% prevalence recorded in adults aged 30–34 years [13]. However, a study carried out in Kenya using stimmunology still detected a significant number of early pre-seroconversion of HIV carriers both among adults and teenage population [14]. This study sought to establish the dominant demographic and other risk factors still playing a role in TTIs seropositivity recorded in the region despite recent safety interventions.

Main text

Methods

Using Yamane formula, and based on KNBTS selection protocol, blood samples of 1215 voluntary blood donors aged 16–65 years from Homabay, Kisumu and Siaya counties (see Additional file 1), was determined for a cross-sectional study by random sampling. Laboratory tests were conducted at Kisumu Regional Blood Donor Center, Kenya, from November 2015 to October 2016 based on its proximity to study sites and quality standards available. Ethical approval was obtained from Maseno University Ethical Review Committee (MUERC). Blood donors were enrolled under informed written consent or with guardian consent in case of donors less than 18 years. A self administered pre-donation questionnaire (see Additional file 2), was used to screen potential donors for health fitness and to collect demographic details such as age. Recent exposure to high risks such as unprotected sex in a period less than 3 months were noted and excluded. Baseline hemoglobin test and body weight measurements was performed by nurse counselor to exclude individuals with anemia (hemoglobin < 12.5 g/dl) or body weight below 50 kg. After blood collection, about 10 ml of donor blood was transferred into a plain vacutainer tube (BD Franklin Lakes, USA) for HIV-1/2, HBV, HCV and syphilis serological testing.

Sera were tested for antigen or/antibody to HIV-1/2 using Vironostika HIV Uni-Form II Ag/Ab test kit (Biomerieux SA, Microelisa system), antibodies to hepatitis C (Anti-HCV) using Abbott Murex Anti-HCV version 4.0 (Murex Biotech SA (Pty) Ltd) and Hepatitis B surface antigen (HBsAg) using Hepanostika HBsAg Ultra test (Biomerieux SA, Microelisa system). Sera were also tested for presence of treponemal antibodies using rapid plasma reagin (RPR) test (Omega diagnostics, UK). All tests were done according to manufacturers’ instructions. All reactive samples were confirmed by chemiluminescent immunoassay. A result was considered positive if the first test and confirmatory test were all seroreactive.

Statistical analysis was performed using SPSS version 20. Seroprevalence distribution in subcategories were compared using Chi square test while logistic regression was used to determine the association between TTIs seroprevalence and various risk factors with a p-value < 0.05 considered statistically significant.

Results

The baseline characteristics of the study participants are summarized in Table 1. Of 1215 voluntary blood donors recruited, 700 (57.6%) were males and 515 (42.4%) females. The overall seroprevalence of TTIs was 114 (9.4%), distributed among HIV, HBV, HCV and syphilis variables at 14 (1.15%), 42 (3.46%), 39 (3.21%) and 19 (1.56%), respectively, with co-infections detected in only 3 (0.25%). There were no significant differences in proportions distributions among demographic variables tested. Demographic and risk factors among donors were evaluated as shown in Table 2. High risk sex was significantly associated with higher odds of HBV infections [> 1 partner vs. 0–1 partner; odd ratio (OR) 2.60; 95% confidence interval (CI) 1.098–6.86; p = 0.046], rather than other infections (see Additional file 3). All other characteristic variables tested had no significant association with infections.
Table 1

Demographic characteristics of reactive and non-reactive participants

Characteristics

Non-reactive, n (%)

Reactive, n (%)

Age groups

 Teenage (16–19)

894 (91.6%)

82 (8.4%)

 Adults (20–65) years

211 (88.28%)

28 (11.72%)

Gender

 Females

475 (92.23%)

40 (7.77%)

 Males

630 (90.0%)

70 (10.0%)

Marital status

 Married

49 (98.0%)

1 (2.0%)

 Single

1056 (90.64%)

109 (9.36%)

Number of donations

 First

813 (90.33%)

87 (9.76%)

 Repeats

292 (92.7%)

23 (7.30%)

Counties

 Homabay

293 (89.0%)

36 (10.94%)

 Kisumu

469 (92.69%)

37 (7.31%)

 Siaya

343 (90.26%)

37 (9.74%)

Data shown are numbers (n) and proportions (%) of TTIs seronegative (1105) and seropositive (110) as distributed among demographics

Table 2

Demographic variables of individual infections among reactive and non-reactive blood donors

Characteristics

HIV (n = 14)

p-value

HBV (n = 42)

p-value

HCV (n = 39)

p-value

Syphilis (n = 19)

p-value

Non-reactive

Reactive

Non-reactive

Reactive

Non-reactive

Reactive

Non-reactive

Reactive

Counties

 Homabay

322

7

0.062

317

12

0.824

318

11

0.633

323

6

0.192

 Kisumu

503

3

ref.

489

17

ref.

492

14

ref.

502

4

ref.

 Siaya

376

4

0.45

367

13

0.96

366

14

0.441

371

9

0.66

Age groups years

 Teenagers (16–19)

965

11

ref.

945

31

ref.

947

29

ref.

961

15

ref.

 Adults (20–65)

236

3

0.863

228

11

0.282

229

10

0.348

235

4

0.879

Gender

 Female

510

5

ref.

501

14

ref.

498

17

ref.

508

7

ref.

 Male

691

9

0.613

672

28

0.23

678

22

0.877

688

12

0.623

Marital status

 Married

50

0

 

49

1

ref.

50

0

 

50

0

 

 Single

1151

14

1124

41

0.57

1126

39

1146

19

Drug use

 No

1189

14

 

1161

42

 

1164

39

 

1185

18

ref.

 Yes

12

0

12

0

12

0

11

1

0.095

High risk sex

 No

1139

13

ref.

1115

37

ref.

1116

36

ref.

1134

18

ref.

 Yes

62

1

0.741

58

5

0.046

60

3

0.476

62

1

0.988

No. donations

 First

888

12

ref.

869

32

ref.

869

31

ref.

884

16

ref.

 Repeats

313

2

0.329

305

10

0.75

307

8

0.435

312

3

0.317

Blood transfusion

 No

1180

14

 

1153

41

ref.

1157

37

ref.

1175

19

 

 Yes

21

0

20

1

0.742

19

2

0.118

21

0

High risk sex was significantly associated with HBV infections p = 0.046

Data shown are: ref., reference category; n, numbers; HIV-1/2Ag/Ab, human immunodeficiency virus 1 and 2 antigen and antibody; HBVsAg, hepatitis B surface antigen; Anti-HCV, antibody to hepatitis C virus; –, no analysis done due to lack of cases; No, not exposed; Yes, exposed; Reactive, seropositive; Non-reactive, seronegative

Discussion

The present study was set to determine the seroprevalence and determinants of HIV, HBV, HCV and syphilis among voluntary blood donors in Homabay, Kisumu and Siaya counties in western Kenya. Results established that, overall seroprevalence of TTIs among voluntary blood donors was 9.4%. Similar results have been reported in studies done in Ethiopia showing 9.5% seroprevalence [1], and in Benin, Nigeria showing 12.5% seroprevalence [15]. However, different result were reported in some parts of Nigeria showing seroprevalence of 19.0% [16], and in Burkina Faso showing seroprevalence of 24% [17]. This observation relates to HIV endemicity and intermediate endemicity of HBV and HCV in the region. In this study, overall TTIs seroprevalence in the three study sites was relatively higher compared to earlier reports of 5.26% national seroprevalence [10]. This variation may be attributed to HIV endemicity experienced in the three study sites as compared to the rest of the country showing difference in HIV/STIs profile. Meanwhile, co-infection of 0.25% detected in the study population was comparable to 0.02% reported earlier in a local study [18], and 0.8% reported in the neighbouring Ethiopia [1].

The HIV seroprevalence of 1.15% detected among blood donors is indicative of low seroprevalence and decreased susceptibility to HIV infections. Similar studies in DRC reported similar result of 1.1% seroprevalence [7]. However, in Ethiopia, a relatively higher seroprevalence of 3.8% was reported [1]. These findings were comparable to the previous national estimates of 0.96–1.43% seroprevalence reported for the periods 2007–2010 [19], and 0.5–1.5% seroprevalence for the periods 2011–2012 [20]. Likewise, the result was also comparable to other national estimates of 1.2–2.5% seroprevalence reported earlier in a local study [21]. This study observation could be results of exclusion of family replacement donors (FRDs) from the study, and the milestones of beyond zero campaign initiatives in the country. In contrast, the findings were relatively low compared to 2.6% national seroprevalence reported in a similar local study [13], as well as 2.6% seroprevalence observed earlier from same study sites [11], (Fig. 1).
Figure 1
Fig. 1

TTIs seroprevalence of 2003 [11] was compared with current study 2017 using test of proportions. HIV infections decreased significantly (p < 0.001), whereas HBV, HCV and syphilis remained similar

In this study, HBV seroprevalence of 3.46% detected among blood donors is indicative of intermediate endemicity and increased susceptibility to HBV infections. Similar results have been reported in Ethiopia showing seroprevalence of 4.7% [1], and in Egypt showing seroprevalence of 4.3% [22]. The findings were comparable to 3.9% seroprevalence reported earlier from the same study sites [11], but relatively higher compared to 1.97–2.77% national estimates for the periods 2006–2010 [19]. In contrast, these study findings were relatively lower compared to the national seroprevalence peak of 5.2% reported in the period 2011–2012 [20]. Thus, it is evident from the study that, despite of recent blood donation safety improvements, HBV infection remains a safety concern in blood donation.

The HCV seroprevalence of 3.21% detected among voluntary blood donors is indicative of intermediate endemicity and increased susceptibility to HCV infections. Similar studies reported relatively lower seroprevalence of 2.7% in Egypt [22], and 1.8% in Cameroon [23] compared to this study results. The variation observed in HCV seroprevalence may be attributed to difference in geographical settings and study methodology adopted by different authors. In this study, HCV seroprevalence was relatively higher compared 0.79–0.99% national estimates for the period 2007–2010 [19]. In addition, this study result was relatively higher compared 2.2% seroprevalence previously reported in the same study sites [11]. Thus; it is evident from the study that HCV infection remains a challenge in blood donation safety.

Syphilis seroprevalence of 1.56% detected among blood donors is indicative of low seroprevalence and decreased susceptibility to syphilis infection. Similar studies in Ethiopia reported similar results of 1.3% seroprevalence [1]. However, different results were reported in Ghana showing seroprevalence of 13.5% [24], and in Cameroon showing 9.1% seroprevalence [25]. Variation observed in seroprevalence may be attributed to difference in geographical setting. In this study, syphilis seroprevalence was similar to the national estimates of 0.15–0.28% [19], and 0.5% seroprevalence reported earlier in the same study area [11]. This observation may be attributed to milestones of beyond zero campaign initiatives.

In the analysis of demographic and risk factors, HBV infection was significantly associated with previous exposure to high risk sex. This may be explained by the low economic status initiating young adolescents to multiple sexual relationships, thus making them vulnerable to HBV and other co-infections. The findings corroborate local studies that found sex for cash payment associated with HIV and other co-infections [12]. In contrast, different results were observed in Egypt showing that TTIs was not associated with high risk sex [26]. In relation to age and gender, none was associated with any of the TTIs seroprevalence, although previous local studies had reported different results showing that adults’ aged ≥ 20 years were more likely to get infected by HIV compared to young adolescents aged 10–19 years [12]. Moreover, females were more likely to test HIV positive compared to males [13]. The variation observed may be related to the difference in study population. In relation to blood transfusion history, there was no association with any of the TTIs. However, a similar study in Egypt reported different results showing HCV seroprevalence of 72% among donors with transfusion history [26]. Meanwhile, a previous local study had reported HIV transfusion transmission risk of 2% among recipients [8]. On the contrary, this study did not find any association between TTIs seroprevalence and blood transfusion history. Recent implementation of high quality screening assays, coupled with stringent pre-donation screening, and enhanced haemovigilance may have influenced decrease in transfusion risk observed earlier. Meanwhile, previous exposure to illicit drug use was not associated with TTIs seroprevalence. However, different results have been reported in Egypt showing 47.5% of blood donors with drug use history testing HCV positive [26].

In conclusion, a substantial percentage of blood donors still harbor transfusion transmissible infections despite recent blood donation safety improvements with greater majority cases caused by HBV infection arising from previous exposure to high risk sex. Promoting safe sex education in learning institutions and early uptake of HBV self testing with subsequent vaccination would help reduce TTIs burden observed among blood donors.

Limitation

Detection of HBV was based on HBVsAg marker without considering IgM and IgG antibodies to the core protein ideal for a complete diagnosis of infection stages [27]; hence low seropositive estimate was possible. Additionally, questions on illicit drug use and sex life style are all associated with stigma with a possibility of influence on overall risk estimate.

Abbreviations

AIDS: 

acquired immunodeficiency syndrome

CMIA: 

chemiluminescent micro particle immunoassay

CDC: 

Center for Disease Control and Prevention

ELISA: 

enzyme linked immunosorbent assay

FRD: 

family replacement donors

HBV: 

hepatitis B virus

HCV: 

hepatitis C virus

HIVAg/Ab: 

human immunodeficiency virus antigen/antibody

JOOTRH: 

Jaramogi Oginga Odinga Teaching and Referral Hospital

KNBTS: 

Kenya national blood transfusions services

NACC: 

National AIDS Control Council

RPR: 

rapid plasma regain

RBTC: 

Regional Blood Transfusion Center

TTIs: 

transfusion transmissible infections

WHO: 

World Health Organization

NASCOP: 

National AIDS/STI Control Program

BECs: 

blood establishment computerized system

Declarations

Authors’ contributions

CGO, LO and BG conceived and designed the study. CGO, LO and FH performed data analysis while VO, PO and CS critically reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank our study participants and the management and staffs of NBTS-Kenya for their participation in sample collection, experimental and data analysis. In addition, we appreciate Jaramogi Oginga Odinga Teaching and Referral Hospital (JOOTRH) for institutional approval of the study. JOOTRH collaborates with RBTC-Kisumu on matters of research and treatment operations.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Baseline data were attached in additional files.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Ethical approval of the study protocol was obtained from Ethical Review Committee (ERC) of Maseno University Number MSU/DRPI/MUERC/00286/16, while institutional approval was obtained from Jaramogi Oginga Odinga Teaching and Referral Hospital Number ERC.IB/VOL.1/254. Informed written consent was obtained from all participants including parental or guardian consent where participant was less than 18 years.

Funding

This research was in part supported by Higher Education Loans Board Awards HELB/45/003/.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Biomedical Science and Technology, Maseno University, Maseno, Kenya
(2)
Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
(3)
Center for Disease Control and Prevention, Kisumu, Kenya
(4)
Regional Blood Transfusion Center, Kisumu, Kenya
(5)
, Kisumu, Kenya

References

  1. Tessema B, Yismaw G, Kassu A, Amsalu A, Mulu A, Emmrich F, Sack U. Seroprevalence of HIV, HBV, HCV and syphilis infections among blood donors at Gondar University Teaching Hospital, Northwest Ethiopia: declining trends over a period of five years. BMC Infect Dis. 2010;10:111.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Muriuki BM, Gicheru MM, Wachira D. Prevalence of hepatitis B and C viral co-infections among HIV-1 infected individuals in Nairobi, Kenya. BMC Res Notes. 2013;6:363.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Jehuda-Cohen. The HIV seronegative window period: diagnostic challenges and solution. ISBN: 978-953-307-719-2. Tech. 2011.Google Scholar
  4. CDC. Progress towards prevention of transfusion transmissible hepatitis B and C virus in sub Saharan Africa; 2000–2011. 2014. http://www.cdc.gov/mmwr. Accessed 11 Dec 2017.
  5. WHO. Global data base on blood safety: Summary report 2011. 2011. http://www.who.int/bloodsafety/global-database. Accessed 11 Dec 2017.
  6. Murphy EL. Transfusion transmitted viral infections. 2007; 1–31. http://www.who.int/bloodsafety/transfusionservices/en/. Accessed 11 Dec 2017.
  7. Kabinda JM, Bulabula AN, Donnen P, Fiase R, Van-den-Ende J, Sandag-Tull D, Duamaix-Wilmet M. Residual risk of transmission of HIV, hepatitis B and C by blood transfusion in Bukavu in Democratic Republic of Congo. Open J Epidemiol. 2014;4:157–63.View ArticleGoogle Scholar
  8. Moore A, Herrera G, Nyamongo J, Lackritz E, Granade T, Nahlen B, Janssen R. Estimated risk of HIV transmission by blood transfusion in Kenya. Lancet. 2001;358(9282):657–60.View ArticlePubMedGoogle Scholar
  9. KNBTS. Progress on NBTS in availing safe blood to all Kenyans. In: A presentation at a breakfast meeting at crown plaza on 14th. August 2017, in Nairobi, Kenya, 2015. http://www.knbs.or.ke. Accessed 11 Dec 2017.
  10. WHO-CDC. Interregional workshop on blood donor selection and donor counseling for priority countries in Africa and Eastern Mediterranean regions, 27th–30th June 2011, Nairobi, Kenya. 2011;8–10. www.who.int/bloodsafety/who-cdc. Accessed 11 Dec 2017.
  11. NASCOP. Ministry of Health, Kenya, AIDS in Kenya: trends, interventions and Impacts. 7th ed. 2005. www.aidskenya.org. Accessed 11 Dec 2017.
  12. NACC, N.A.C.C. Kenya HIV country profile. 2016; 2016: 39, 83, 188. http://www.nacc.or.ke, http://www.nascop.or.ke. Accessed 11 Dec 2017.
  13. Kimani D, Mwangi J, Mwangi M, Bunnell R, Kellogg TA, Oluoch T, Group KS. Blood donors in Kenya: a comparison of voluntary and family replacement donors based on a population-based survey. Vox Sang. 2011;100(2):212–8.View ArticlePubMedGoogle Scholar
  14. Mumo J, Vansover A, Jehuda-Cohen T. Detecting seronegative-early HIV infections among adult versus student Kenyan blood donors, by using Stimmunology. Exp Biol Med (Maywood). 2009;234(8):931–9.View ArticleGoogle Scholar
  15. Halim NK, Ajayi OI. Risk factors and seroprevalence of hepatitis C antibody in blood donors in Nigeria. East Afr Med J. 2000;77(8):410–2.PubMedGoogle Scholar
  16. Nwankwo E, Momodu I, Umar I, Musa B, Adeleke S. Seroprevalence of major bloodborne infections among blood donors in Kano, Nigeria Turks. Med Sci. 2012;42(2):337–41.Google Scholar
  17. Nagalo BM, Bisseye C, Sanou M, Kienou K, Nebié YK, Kiba A, Dahourou H, Ouattara S, Nikiema JB, Moret R, Zongo JD. Seroprevalence and incidences of transfusion transmissible infectious diseases among blood donors from regional blood transfusion centers in Burkina Faso, West Africa. Trop Med Int Health. 2012;17(2):247–53.View ArticlePubMedGoogle Scholar
  18. Karuru JW, Lule GN, Joshi M, Anzala O. Prevalence of HCV and HIV/HCV co-infection among volunteer blood donors and VCT clients. East Afr Med J. 2005;82(4):166–9.PubMedGoogle Scholar
  19. KNBTS. Progress on NBTS in availing safe blood to all Kenyans. In: A presentation at a conference in Nairobi, Kenya. 2011. http://www.nbtskenya.or.ke. Accessed 11 Dec 2017.
  20. KNBTS. Blood transfusion services in Kenya. In: A presentation in a conference in Naivasha March, 2012. 2012. kapkenya.org//NBTS.
  21. Basavaraju SV, Mwangi J, Nyamongo J, Zeh C, Kimani D, Shiraishi RW, Marum LH. Reduced risk of transfusion-transmitted HIV in Kenya through centrally co-ordinated blood centres, stringent donor selection and effective p24 antigen-HIV antibody screening. Vox Sang. 2010;99(3):212–9.View ArticlePubMedGoogle Scholar
  22. El-Gilany AH, El-Fedawy S. Bloodborne infections among student voluntary blood donors in Mansoura University, Egypt. East Mediterr Health J. 2006;12(6):742–8.PubMedGoogle Scholar
  23. Carole EEM, Francoise NS, Estelle GES, Madeline M, Leopold GL. HIV, HBV, HCV and syphilis infections among blood donors and transfusion related complications among recipients at the Laquintinie Hospital in Douala, Cameroon. BMC Hematol Ser. 2014; 10(1187): 2052-1838-14-5. https://doi.org/10.1186/2052-1839-14-5.
  24. Ampofo W, Nii-Trebi N, Ansah J, Abe K, Naito H, Aidoo S, Ishikawa K. Prevalence of blood-borne infectious diseases in blood donors in Ghana. J Clin Microbiol. 2002;40(9):3523–5.View ArticlePubMedPubMed CentralGoogle Scholar
  25. Mbaya DN, Takam D, Ndumbe PM. Serological findings amongst first time blood donors in Yaounde, Cameroon. Is safe donors’ a reality or a myth. Transfus Med. 2003;13(5):267–73.View ArticleGoogle Scholar
  26. Awadalla HI, Ragab MH, Nassar NA, Osman MA. Risk factors of hepatitis C infection among Egyptian blood donors. Cent Eur J Public Health. 2011;19(4):217–21.PubMedGoogle Scholar
  27. Webale MK, Budambula V, Lihana R, Musumba FO, Muchama AK, Budambula NI, Were T. Hepatitis B virus sero-profiles and genotypes in HIV-1 infected and uninfected injection and non-injection drug users from coastal Kenya. BMC Infect Dis. 2015;15:299.View ArticlePubMedGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement