Wilbrecht L, Nottebohm F. Vocal learning in birds and humans. Ment Retard Dev Disabil Res Rev. 2003;9(3):135–48.
Article
PubMed
Google Scholar
Doupe AJ, Kuhl PK. Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci. 1999;22:567–631.
Article
PubMed
CAS
Google Scholar
Zeigler HP, Marler P, editors. Behavioral neurobiology of birdsong: annals of the New York academy of science. New York: New York academy of science; 2004.
Google Scholar
Zeigler HP, Marler P, editors. Neuroscience of birdsong. Cambridge: Cambridge University Press; 2008.
Google Scholar
Bolhuis JJ, Everaert M. Birdsong, speech, and language. In: Bolhuis JJ, Everaert M, editors. Exploring the evolution of mind and brain. Cambridge: MIT Press; 2013. p. 542.
Google Scholar
Mello CV. The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning. Cold Spring Harb Protoc. 2014;2014(12):1237–42.
Article
PubMed
PubMed Central
Google Scholar
Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science. 2014;346(6215):1256846.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lovell PV, Clayton DF, Replogle KL, Mello CV. Birdsong “transcriptomics”: neurochemical specializations of the oscine song system. PLoS ONE. 2008;3(10):e3440.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lovell PV, Carleton JB, Mello CV. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations. BMC Genomics. 2013;14(1):470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wada K, Sakaguchi H, Jarvis ED, Hagiwara M. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J Comp Neurol. 2004;476(1):44–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Wang XJ, Tannenhauser J, Podell S, Mukherjee P, Hertel M, Biane J, Masuda S, Nottebohm F, Gaasterland T. Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc Natl Acad Sci USA. 2007;104(16):6834–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thompson CK, Meitzen J, Replogle K, Drnevich J, Lent KL, Wissman AM, Farin FM, Bammler TK, Beyer RP, Clayton DF, et al. Seasonal changes in patterns of gene expression in avian song control brain regions. PLoS ONE. 2012;7(4):e35119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stevenson TJ, Replogle K, Drnevich J, Clayton DF, Ball GF. High throughput analysis reveals dissociable gene expression profiles in two independent neural systems involved in the regulation of social behavior. BMC Neurosci. 2012;13:126.
Article
PubMed
PubMed Central
Google Scholar
Hilliard AT, Miller JE, Horvath S, White SA. Distinct neurogenomic states in basal ganglia subregions relate differently to singing behavior in songbirds. PLoS Comput Biol. 2012;8(11):e1002773.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron. 2012;73(3):537–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV, Horita H, Patterson MA, White SA, Scharff C, et al. A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA. 2006;103(41):15212–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hara E, Rivas MV, Ward JM, Okanoya K, Jarvis ED. Convergent differential regulation of parvalbumin in the brains of vocal learners. PLoS ONE. 2012;7:e29457.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kubikova L, Wada K, Jarvis ED. Dopamine receptors in a songbird brain. J Comp Neurol. 2010;518(6):741–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kato M, Okanoya K. Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Res. 2010;1360:56–76.
Article
PubMed
CAS
Google Scholar
Lombardino AJ, Hertel M, Li XC, Haripal B, Martin-Harris L, Pariser E, Nottebohm F. Expression profiling of intermingled long-range projection neurons harvested by laser capture microdissection. J Neurosci Methods. 2006;157(2):195–207.
Article
PubMed
CAS
Google Scholar
Dong S, Replogle KL, Hasadsri L, Imai BS, Yau PM, Rodriguez-Zas S, Southey BR, Sweedler JV, Clayton DF. Discrete molecular states in the brain accompany changing responses to a vocal signal. Proc Natl Acad Sci USA. 2009;106(27):11364–9.
Article
PubMed
PubMed Central
Google Scholar
London SE, Dong S, Replogle K, Clayton DF. Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. Dev Neurobiol. 2009;69(7):437–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Replogle KL, Arnold AP, Ball GF, Band M, Bensch S, Brenowitz EA, Dong S, Drnevich J, Ferris M, George JM, et al. The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genomics. 2008;9(1):131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Drnevich J, Replogle KL, Lovell P, Hahn TP, Johnson F, Mast TG, Nordeen E, Nordeen K, Strand C, London SE, et al. Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc Natl Acad Sci USA. 2012;109(Suppl 2):17245–52.
Article
PubMed
PubMed Central
Google Scholar
Whitney O, Johnson F. Motor-induced transcription but sensory-regulated translation of ZENK in socially interactive songbirds. J Neurobiol. 2005;65(3):251–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, et al. The genome of a songbird. Nature. 2010;464(7289):757–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lovell PV, Huizinga NA, Friedrich SR, Wirthlin M, Mello CV. The constitutive differential transcriptome of a brain circuit for vocal learning. BMC Genomics. 2018;19(1):231.
Article
PubMed
PubMed Central
Google Scholar
Wirthlin M, Lovell PV, Jarvis ED, Mello CV. Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics. 1082;2014:15.
Google Scholar
Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, Warren WC, Mello CV. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol. 2014;15(12):565.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lovell PV, Huizinga NA, Friedrich SR, Wirthlin M, Mello CV. The constitutive differential transcriptome of a brain circuit for vocal learning. figshare. https://doi.org/10.6084/m9.figshare.c.4081835.
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet JN, Kellis M, Mukherjee S, et al. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science. 2014;346:1256780.
Article
PubMed
PubMed Central
CAS
Google Scholar