Wen PY. New developments in targeted molecular therapies for glioblastoma. Expert Rev Anticancer Ther. 2009;9:7–10.
Article
PubMed
Google Scholar
Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K, Thillet J, Delattre JY, Hoang-Xuan K, Sanson M. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer. 2006;106:2218–23.
Article
PubMed
CAS
Google Scholar
Jo GH, Bogler O, Chwae YJ, Yoo H, Lee SH, Park JB, Kim YJ, Kim JH, Gwak HS. Radiation-induced autophagy contributes to cell death and induces apoptosis partly in malignant glioma cells. Cancer Res Treat. 2015;47:221–41.
Article
PubMed
CAS
Google Scholar
Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.
Article
PubMed
CAS
Google Scholar
Sheline GE. Radiation therapy of brain tumors. Cancer. 1977;39:873–81.
Article
PubMed
CAS
Google Scholar
Garden AS, Maor MH, Yung WK, Bruner JM, Woo SY, Moser RP, Lee YY. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol. 1991;20:99–110.
Article
PubMed
CAS
Google Scholar
Puck TT, Marcus PI. Action of X-rays on mammalian cells. J Exp Med. 1956;103:653–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Little JB. Failla memorial lecture. Changing views of cellular radiosensitivity. Radiat Res. 1994;140:299–311.
Article
PubMed
CAS
Google Scholar
Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to gamma-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastomas. Cell Death Dis. 2013;4:e895.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith LE, Nagar S, Kim GJ, Morgan WF. Radiation-induced genomic instability: radiation quality and dose response. Health Phys. 2003;85:23–9.
Article
PubMed
CAS
Google Scholar
McMillan TJ. Residual DNA damage: what is left over and how does this determine cell fate? Eur J Cancer. 1992;28:267–9.
Article
PubMed
CAS
Google Scholar
Joshi GP, Nelson WJ, Revell SH, Shaw CA. X-ray-induced chromosome damage in live mammalian cells, and improved measurements of its effects on their colony-forming ability. Int J Radiat Biol Relat Stud Phys Chem Med. 1982;41:161–81.
Article
PubMed
CAS
Google Scholar
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.
Article
PubMed
CAS
Google Scholar
Otomo T, Hishii M, Arai H, Sato K, Sasai K. Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res. 2004;45:53–60.
Article
PubMed
CAS
Google Scholar
Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–94.
Article
PubMed
CAS
Google Scholar
Russo AL, Kwon HC, Burgan WE, Carter D, Beam K, Weizheng X, Zhang J, Slusher BS, Chakravarti A, Tofilon PJ, Camphausen K. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 2009;15:607–12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol. 1996;134:963–70.
Article
PubMed
CAS
Google Scholar
Afshar G, Jelluma N, Yang X, Basila D, Arvold ND, Karlsson A, Yount GL, Dansen TB, Koller E, Haas-Kogan DA. Radiation-induced caspase-8 mediates p53-independent apoptosis in glioma cells. Cancer Res. 2006;66:4223–32.
Article
PubMed
CAS
Google Scholar
Hara S, Nakashima S, Kiyono T, Sawada M, Yoshimura S, Iwama T, Banno Y, Shinoda J, Sakai N. p53-independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death Differ. 2004;11:853–61.
Article
PubMed
CAS
Google Scholar
Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM Jr. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol. 1994;127:1717–27.
Article
PubMed
CAS
Google Scholar
Hong X, Lei L, Glas R. Tumors acquire inhibitor of apoptosis protein (IAP)-mediated apoptosis resistance through altered specificity of cytosolic proteolysis. J Exp Med. 2003;197:1731–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bassi C, Mello SS, Cardoso RS, Godoy PD, Fachin AL, Junta CM, Sandrin-Garcia P, Carlotti CG, Falcao RP, Donadi EA, et al. Transcriptional changes in U343 MG: a glioblastoma cell line exposed to ionizing radiation. Hum Exp Toxicol. 2008;27:919–29.
Article
PubMed
CAS
Google Scholar
Hashemi SNB. MTT assay instead of the clonogenic assay in measuring the response of cells to ionizing radiation. J Radiobiol. 2014;1:3–82.
Google Scholar
Nikzad S, Hashemi B, Hassan ZM, Mozdarani H. The cell survival of F10B16 melanoma and 4T1 breast adenocarcinoma irradiated to gamma radiation using the MTT assay based on two different calculation methods. J Biomed Phys Eng. 2013;3:29–36.
PubMed
PubMed Central
Google Scholar
Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984;2:317–23.
Article
PubMed
CAS
Google Scholar
Bjork-Eriksson T, West C, Karlsson E, Mercke C. Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancers. Int J Radiat Oncol Biol Phys. 2000;46:13–9.
Article
PubMed
CAS
Google Scholar
Haas-Kogan DA, Dazin P, Hu L, Deen DF, Israel A. p53-independent apoptosis: a mechanism of radiation-induced cell death of glioblastoma cells. Cancer J Sci Am. 1996;2:114–21.
PubMed
CAS
Google Scholar
Yount GL, Haas-Kogan DA, Vidair CA, Haas M, Dewey WC, Israel MA. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res. 1996;56:500–6.
PubMed
CAS
Google Scholar
van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry. 1996;24:131–9.
Article
PubMed
Google Scholar
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.
PubMed
CAS
Google Scholar
Buch K, Peters T, Nawroth T, Sanger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay–a comparative study. Radiat Oncol. 2012;7:1.
Article
PubMed
PubMed Central
Google Scholar
Reitman ZJ, Winkler F, Elia AEH. New directions in the treatment of glioblastoma. Semin Neurol. 2018;38:50–61.
Article
PubMed
Google Scholar
Rivera M, Sukhdeo K, Yu J. Ionizing radiation in glioblastoma initiating cells. Front Oncol. 2013;3:74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Braganza MZ, Kitahara CM, de Gonzalez AB, Inskip PD, Johnson KJ, Rajaraman P. Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol. 2012;14:1316–24.
Article
PubMed
PubMed Central
Google Scholar
Shu HK, Kim MM, Chen P, Furman F, Julin CM, Israel MA. The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc Natl Acad Sci USA. 1998;95:14453–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.
Article
PubMed
CAS
Google Scholar
Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiform cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg. 2003;98:378–84.
Article
PubMed
CAS
Google Scholar
Panganiban RA, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 2013;14:15931–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu ZG, Chen HY, Cheng JJ, Chen ZP, Li XN, Xia YF. Relationship between methylation status of ERCC1 promoter and radiosensitivity in glioma cell lines. Cell Biol Int. 2009;33:1111–7.
Article
PubMed
CAS
Google Scholar
Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun. 2006;344:821–6.
Article
PubMed
CAS
Google Scholar
Short SC, Martindale C, Bourne S, Brand G, Woodcock M, Johnston P. DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol. 2007;9:404–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Landsverk KS, Patzke S, Rein ID, Stokke C, Lyng H, De Angelis PM, Stokke T. Three independent mechanisms for arrest in G2 after ionizing radiation. Cell Cycle. 2011;10:819–29.
Article
PubMed
CAS
Google Scholar
Tani M, Goto S, Kamada K, Mori K, Urata Y, Ihara Y, Kijima H, Ueyama Y, Shibata S, Kondo T. Hammerhead ribozyme against γ-glutamylcysteine synthetase attenuates resistance to ionizing radiation and cisplatin in human T98G glioblastoma cells. Jpn J Cancer Res. 2002;93:716–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Oliveira HF, Scrideli CA, Tone LG. Inhibition of polo-like kinase 1 induces cell cycle arrest and sensitizes glioblastoma cells to ionizing radiation. Cancer Biother Radiopharm. 2013;28:516–22.
Article
PubMed
PubMed Central
CAS
Google Scholar