Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15.
Article
Google Scholar
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153(Suppl 1):S347–57.
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Stephan R, Zurfluh K, Hächler H, Fanning S. Characterization of the genetic environment of bla ESBL genes, integrons and toxin–antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Front Microbiol. 2014;5:716.
PubMed
Google Scholar
Chen W, Fang T, Zhou X, Zhang D, Shi X, Shi C. IncHI2 plasmids are predominant in antibiotic-resistant Salmonella isolates. Front Microbiol. 2016;7:1566.
PubMed
PubMed Central
Google Scholar
Thomas CM. Plasmid incompatibility. In: Molecular life sciences. New York: Springer; 2014. p. 1–3. http://link.springer.com/10.1007/978-1-4614-6436-5_565-2.
Google Scholar
Datta N, Hedges RW. R factors of compatibility group A. J Gen Microbiol. 1973;74:335–6.
Article
CAS
Google Scholar
Waters VL. Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci. 1999;4:D433–56.
Article
CAS
Google Scholar
Glenn LM, Lindsey RL, Folster JP, Pecic G, Boerlin P, Gilmour MW, et al. Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated from animals, retail meats, and humans in the United States and Canada. Microb Drug Resist. 2013;19(3):175–84.
Article
CAS
Google Scholar
Poole TL, Edrington TS, Brichta-Harhay DM, Carattoli A, Anderson RC, Nisbet DJ. Conjugative transferability of the A/C plasmids from Salmonella enterica isolates that possess or lack bla CMY in the A/C plasmid backbone. Foodborne Pathog Dis. 2009;6(10):1185–94.
Article
CAS
Google Scholar
Lyimo B, Buza J, Subbiah M, Temba S, Kipasika H, Smith W, et al. IncF plasmids are commonly carried by antibiotic resistant Escherichia coli isolated from drinking water sources in northern Tanzania. Int J Microbiol. 2016;2016:3103672.
Article
Google Scholar
Phan M-D, Kidgell C, Nair S, Holt KE, Turner AK, Hinds J, et al. Variation in Salmonella enterica serovar typhi IncHI1 plasmids during the global spread of resistant typhoid fever. Antimicrob Agents Chemother. 2009;53(2):716–27.
Article
CAS
Google Scholar
Mirza S, Kariuki S, Mamun KZ, Beeching NJ, Hart CA. Analysis of plasmid and chromosomal DNA of multidrug-resistant Salmonella enterica serovar typhi from Asia. J Clin Microbiol. 2000;38(4):1449–52.
CAS
PubMed
PubMed Central
Google Scholar
Mutai WC, Muigai AWT, Waiyaki P, Kariuki S. Multi-drug resistant Salmonella enterica serovar Typhi isolates with reduced susceptibility to ciprofloxacin in Kenya. BMC Microbiol. 2018;18(1):187. https://doi.org/10.1186/s12866-018-1332-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–28.
Article
CAS
Google Scholar
Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7(6):1513–23.
Article
CAS
Google Scholar
Walia SK, Madhavan T, Chugh TD, Sharma KB. Characterization of self-transmissible plasmids determining lactose fermentation and multiple antibiotic resistance in clinical strains of Klebsiella pneumoniae. Plasmid. 1987;17(1):3–12.
Article
CAS
Google Scholar
Kariuki S, Revathi G, Muyodi J, Mwituria J, Munyalo A, Mirza S, et al. Characterization of multidrug-resistant typhoid outbreaks in Kenya. J Clin Microbiol. 2004;42(4):1477–82.
Article
Google Scholar
Wain J, Diem Nga LT, Kidgell C, James K, Fortune S, Song Diep T, et al. Molecular analysis of incHI1 antimicrobial resistance plasmids from Salmonella serovar Typhi strains associated with typhoid fever. Antimicrob Agents Chemother. 2003;47(9):2732–9.
Article
CAS
Google Scholar
Fica A, Fernandez-beros ME, Aron-hott L, Rivas A, Dottone K, Chumpitaz J, et al. Antibiotic-resistant Salmonella typhi from two outbreaks: few ribotypes and IS 200 Types Harbor Inc HI1 Plasmids. Microb Drug Resist. 1997;3(4):339–43. https://doi.org/10.1089/mdr.1997.3.339.
Article
CAS
PubMed
Google Scholar
Harnett N, McLeod S, AuYong Y, Wan J, Alexander S, Khakhria R, et al. Molecular characterization of multiresistant strains of Salmonella typhi from South Asia isolated in Ontario, Canada. Can J Microbiol. 1998;44(4):356–63.
Article
CAS
Google Scholar
Buckle GC, Walker CLF, Black RE, Lee K, Crump J, Luby S, et al. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health. 2012;2(1):346–53.
Article
Google Scholar
Shanahan PM, Jesudason MV, Thomson CJ, Amyes SG. Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India. J Clin Microbiol. 1998;36(6):1595–600.
CAS
PubMed
PubMed Central
Google Scholar
Breiman RF, Cosmas L, Njuguna H, Audi A, Olack B, Ochieng JB, et al. Population-based incidence of typhoid fever in an urban informal settlement and a rural area in Kenya: implications for typhoid vaccine use in Africa. PLoS ONE. 2012;7(1):e29119. https://doi.org/10.1371/journal.pone.0029119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan M, Li X, Liao Q, Li F, Zhang J, Kan B. The emergence and outbreak of multidrug-resistant typhoid fever in China. Emerg Microbes Infect. 2016;5(6):e62.
PubMed
PubMed Central
Google Scholar
Holt KE, Phan MD, Baker S, Duy PT, Nga TVT, Nair S, et al. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl Trop Dis. 2011;5(7):e1245.
Article
Google Scholar
Kubasova T, Cejkova D, Matiasovicova J, Sekelova Z, Polansky O, Medvecky M, et al. Antibiotic resistance, core-genome and protein expression in IncHI1 plasmids in Salmonella Typhimurium. Genome Biol Evol. 2016;8(6):1661–71.
Article
CAS
Google Scholar
Hradecka H, Karasova D, Rychlik I. Characterization of Salmonella enterica serovar Typhimurium conjugative plasmids transferring resistance to antibiotics and their interaction with the virulence plasmid. J Antimicrob Chemother. 2008;62(5):938–41. https://doi.org/10.1093/jac/dkn286.
Article
CAS
PubMed
Google Scholar
Holt KE, Thomson NR, Wain J, Phan MD, Nair S, Hasan R, et al. Multidrug-resistant Salmonella enterica serovar paratyphi A harbors IncHI1 plasmids similar to those found in serovar typhi. J Bacteriol. 2007;189(11):4257–64.
Article
CAS
Google Scholar
Phan M-D, Wain J. IncHI plasmids, a dynamic link between resistance and pathogenicity. J Infect Dev Ctries. 2008;2(4):272–8.
PubMed
Google Scholar
Tagg KA, Iredell JR, Partridge SR. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid. Antimicrob Agents Chemother. 2014;58(8):4949–52.
Article
Google Scholar
van Boxtel R, Wattel AA, Arenas J, Goessens WHF, Tommassen J. Acquisition of carbapenem resistance by plasmid-encoded-AmpC-expressing Escherichia coli. Antimicrob Agents Chemother. 2017;61(1):e01413–6.
PubMed
Google Scholar
Smith H, Bossers A, Harders F, Wu G, Woodford N, Schwarz S, et al. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother. 2015;59(9):5357–65.
Article
CAS
Google Scholar
Zhao F, Feng Y, Lü X, McNally A, Zong Z. IncP plasmid carrying colistin resistance gene mcr-1 in Klebsiella pneumoniae from Hospital Sewage. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.02229-16.
Article
PubMed
PubMed Central
Google Scholar
Sen D, Van der Auwera GA, Rogers LM, Thomas CM, Brown CJ, Top EM. Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes. Appl Environ Microbiol. 2011;77(22):7975–83.
Article
CAS
Google Scholar
Schluter A, Heuer H, Szczepanowski R, Forney LJ, Thomas CM, Pühler A, et al. The 64 508 bp IncP-1 antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1 group. Microbiology. 2003;149(11):3139–53.
Article
CAS
Google Scholar
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev. 2007;31(4):449–77.
Article
Google Scholar
Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev. 2012;36(6):1083–104.
Article
CAS
Google Scholar
Lu X, Hu Y, Luo M, Zhou H, Wang X, Du Y, et al. MCR-1.6, a new MCR variant carried by an IncP plasmid in a colistin-resistant Salmonella enterica Serovar Typhimurium isolate from a healthy individual. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/aac.02632-16.
Article
PubMed
PubMed Central
Google Scholar
Kamruzzaman M, Shoma S, Thomas CM, Partridge SR, Iredell JR. Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS ONE. 2017;12(2):e0172913. https://doi.org/10.1371/journal.pone.0172913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Getino M, Palencia-Gándara C, Garcillán-Barcia MP, de la Cruz F. PifC and Osa, plasmid weapons against rival conjugative coupling proteins. Front Microbiol. 2017;8:2260.
Article
Google Scholar