Kobrin Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14:179–83. https://doi.org/10.1080/09286580701396720.
Article
Google Scholar
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–36. https://doi.org/10.1016/S0140-6736(09)62124-3.
Article
PubMed
Google Scholar
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015;2:17. https://doi.org/10.1186/s40662-015-0026-2.
Article
Google Scholar
Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diab Care. 2017;40:412–8. https://doi.org/10.2337/dc16-2641.
Article
Google Scholar
Ting DSW, Tan KA, Phua V, Tan GSW, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016. https://doi.org/10.1007/s11892-016-0812-9.
Article
PubMed
Google Scholar
Priščáková P, Minárik G, Repiská V. Candidate gene studies of diabetic retinopathy in human. Mol Biol Rep. 2016;43:1327–45. https://doi.org/10.1007/s11033-016-4075-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joglekar MV, Januszewski AS, Jenkins AJ, Hardikar AA. Circulating microRNA biomarkers of diabetic retinopathy. Diabetes. 2016;65:22–4.
Article
CAS
Google Scholar
Bhaskaran M, Mohan M. MicroRNAs. Vet Pathol. 2014;51:759–74. https://doi.org/10.1177/0300985813502820.
Article
CAS
PubMed
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. https://doi.org/10.1038/nature02871.
Article
CAS
PubMed
Google Scholar
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.
Article
CAS
Google Scholar
McDermott AM, Kerin MJ, Miller N. Identification and validation of miRNAs as endogenous controls for RQ-PCR in blood specimens for breast cancer studies. PLoS ONE. 2013;8:1–11.
Google Scholar
Niu Y, Wu Y, Huang J, Li Q, Kang K, Qu J, et al. Identification of reference genes for circulating microRNA analysis in colorectal cancer. Sci Rep. 2016;6:1–9. https://doi.org/10.1038/srep35611.
Article
CAS
Google Scholar
Chien H-Y, Lee T-P, Chen C-Y, Chiu Y-H, Lin Y-C, Lee L-S, et al. Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. J Chinese Med Assoc. 2014;78:204–11. https://doi.org/10.1016/j.jcma.2014.11.002.
Article
Google Scholar
Satake E, Pezzolesi MG, Md Dom ZI, Smiles AM, Niewczas MA, Krolewski AS. Circulating miRNA profiles associated with hyperglycemia in patients with Type 1 diabetes. Diabetes. 2018;67:1013–23. https://doi.org/10.2337/db17-1207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneto CM, Nascimento JS, Moreira MCR, Ludovico ND, Santana AP, Silva RAA, et al. MicroRNA profiling identifies miR-7-5p and miR-26b-5p as differentially expressed in hypertensive patients with left ventricular hypertrophy. Braz J Med Biol Res. 2017;50:1–9. https://doi.org/10.1590/1414-431x20176211.
Article
CAS
Google Scholar
Kaneto CM, Nascimento JS, Prado MSJG, Mendonça LSO. Circulating miRNAs as biomarkers in cardiovascular diseases. Eur Rev Med Pharmacol Sci. 2019;23:2234–43. https://doi.org/10.26355/eurrev_201903_17271.
Article
CAS
PubMed
Google Scholar
Liu Y, Chen S, Zhang J, Shan S, Chen L, Wang R, et al. Analysis of serum microRNAs as potential biomarker in coronary bifurcation lesion. Dis Markers. 2015. https://doi.org/10.1155/2015/351015.
Article
PubMed
PubMed Central
Google Scholar
Zhao W, Zhao S-P, Zhao Y-H. MicroRNA-143/-145 in cardiovascular diseases. Biomed Res Int. 2015;2015:1–9. https://doi.org/10.1155/2015/531740.
Article
CAS
Google Scholar
Serafin A, Foco L, Blankenburg H, Picard A, Zanigni S, Zanon A, et al. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Res Notes. 2014;7:715.
Article
Google Scholar
Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21. https://doi.org/10.1038/nrendo.2013.86.
Article
CAS
PubMed
Google Scholar
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.
Article
CAS
Google Scholar
Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, et al. Serum MiRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014;34:1733–40. https://doi.org/10.1159/000366374.
Article
CAS
PubMed
Google Scholar
Hirota K, Keino H, Inoue M, Ishida H, Hirakata A. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2015;253:335–42.
Article
CAS
Google Scholar
Gomaa AR, Elsayed ET, Moftah RF. MicroRNA-200b expression in the vitreous humor of patients with proliferative diabetic retinopathy. Ophthalmic Res. 2017;58:168–75. https://doi.org/10.1159/000475671.
Article
CAS
PubMed
Google Scholar
Ma J, Wang J, Liu Y, Wang C, Duan D, Lu N, et al. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus. Clinics. 2017;72:111–5. https://doi.org/10.6061/clinics/2017(02)08.
Article
PubMed
PubMed Central
Google Scholar
Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M, Porta M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res. 2018;176:69–77. https://doi.org/10.1016/j.exer.2018.07.003.
Article
CAS
PubMed
Google Scholar
Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82. https://doi.org/10.1016/S0161-6420(03)00475-5.
Article
CAS
PubMed
Google Scholar
Prado MSJG, de Goes TC, de Jesus ML, Mendonça LSO, Nascimento JS, Kaneto CM. Identification of miR-328-3p as an endogenous reference gene for the normalization of miRNA expression data from patients with diabetic retinopathy. Sci Rep. 2019;9:1–8.
Article
CAS
Google Scholar
de Oliveira SA, de Freitas Souza BS, Barreto EPS, Kaneto CM, Neto HA, Azevedo CM, et al. Reduction of galectin-3 expression and liver fibrosis after cell therapy in a mouse model of cirrhosis. Cytotherapy. 2012;14:339–49. https://doi.org/10.3109/14653249.2011.637668.
Article
CAS
PubMed
Google Scholar
Leal MMT, Costa-Ferro ZSM, Souza BSDF, Azevedo CM, Carvalho TM, Kaneto CM, et al. Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms. Neurochem Res. 2014;39:259–68.
Article
CAS
Google Scholar
Souza BSF, Azevedo CM, Lima RS, Kaneto CM, Vasconcelos JF, Guimarães ET, et al. Bone marrow cells migrate to the heart and skeletal muscle and participate in tissue repair after Trypanosoma cruzi infection in mice. Int J Exp Pathol. 2014;95:321–9.
Article
CAS
Google Scholar
Kaviarasan K, Jithu M, Arif Mulla M, Sharma T, Sivasankar S, Das UN, et al. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. Metabolism. 2015;64:958–66. https://doi.org/10.1016/j.metabol.2015.04.005.
Article
CAS
PubMed
Google Scholar
Simó-Servat O, Simó R, Hernández C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diab Res. 2016;2016:1–13. https://doi.org/10.1155/2016/5263798.
Article
CAS
Google Scholar
Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M. Serum circulating microRNA profiling for identification of potential Type 2 diabetes and obesity biomarkers. PLoS ONE. 2013;8:21–3.
Article
Google Scholar
Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5:697–712.
Article
CAS
Google Scholar
Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, et al. Changes in microrna (mir) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clin Exp Pharmacol Physiol. 2009;36:32–9.
Article
Google Scholar
Inoki K. Role of TSC—mTOR pathway in diabetic nephropathy. Diab Res Clin Prat. 2008;82:59–62.
Article
Google Scholar
Fiaschi-taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-castellano I, Selk K, et al. Induction of human β-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6 nathalie. Diabetes. 2010;59:1926–36.
Article
CAS
Google Scholar
Kölling M, Kaucsar T, Schauerte C, Hübner A, Dettling A, Park J, et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther. 2017;25:165–80.
Article
Google Scholar
Hou Q, Zhou L, Tang J, Ma N, Xu A, Tang J, et al. LGR4 is a direct target of MicroRNA-34a and modulates the proliferation and migration of retinal pigment epithelial ARPE-19 cells. PLoS ONE. 2016;15:1–12.
Google Scholar
Tadano T, Kakuta Y, Hamada S, Shimodaira Y, Kuroha M, Kawakami Y, et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J Gastrointest Oncol. 2016;8:532–42.
Article
Google Scholar
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2011;107:1058–70.
Article
Google Scholar
Kowluru RA, Kanwar M. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radic Biol Med. 2010;46:1677–85.
Article
Google Scholar
Kowluru RA, Santos JM, Zhong Q. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Retin Cell Biol. 2014;55:5652–60.
Google Scholar
Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia- induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Hum Cell. 2019;32:260–74.
Article
Google Scholar
Kimura I, Honda R, Okai H, Okabe M. Vascular endothelial growth factor promotes cell-cycle transition from G0 to G1 phase in subcultured endothelial cells of diabetic rat thoracic aorta. Jpn J Pharmacol. 2000;83:47–55.
Article
CAS
Google Scholar