Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.
Article
CAS
Google Scholar
Omoregie R, Igbarumah IO, Egbe CA, Ogefere OH. Urinary tract infection among neonates in Benin City Nigeria. GMBHS. 2012;4:118–21.
Google Scholar
Li J, Huang Z-Y, Yu T, Tao X-Y, Hu Y-M, Wang HC, Zou M-X. Isolation and characterization of a sequence type 25 carbapenem-resistant hypervirulent Klebsiella pneumoniae from mid-south region of China. BMC Microbiol. 2019;19:219.
Article
CAS
Google Scholar
Bengoechea JA, Pessoa JS. Klebsiella pneumoniae infection biology: living to counteract host defenses. FEMS Microbiol Rev. 2019;43(2):123–44.
Article
CAS
Google Scholar
Rath S, Padhy RN. Prevalence of two multidrug-resistant Klebsiella species in an Indian teaching hospital and adjoining community. J Infect Public Heal. 2014;7:496–507.
Article
Google Scholar
Fadeyi A, Zumuk CP, Raheem RA, Nwabuisi C, Desalu OO. Prevalence and antibiotic susceptibility pattern of ESBL producing Klebsiellae isolated from clinical specimens in a Nigerian tertiary hospital. Afr J Infect Dis. 2016;10(1):32–7.
Google Scholar
Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of Gram negative bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes. 2019;12:38.
Article
Google Scholar
Reza A, Sutton JM, Rahman KM. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in Gram negative (ESKAPEE) bacteria. Antibiotics. 2019;8:229.
Article
CAS
Google Scholar
Martins M, Viveiros M, Couto I, Costa SS, Pacheco T, Fanning S, Pages J-M, Amaral L. Identification of efflux pump mediated multidrug resistant bacteria by ethidium bromide agar cartwheel method. In vivo. 2011;25:171–8.
CAS
PubMed
Google Scholar
Cheesebrough M. Escherichia coli District laboratory practice in tropical countries, Part 2. 2nd ed. London: Cambridge University Press; 2006. p. 178–80.
Book
Google Scholar
EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Break point tables for interpretation of MICs and zone diameters version 9.0. 2019; http://www.eucast.org. Accessed 10 July 2019.
Stephanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic B. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9.
Article
Google Scholar
Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathog. 2014;3:743–58.
Article
CAS
Google Scholar
Calfee DP. Recent advances in the understanding and management of Klebsiella pneumoniae [version 1; referees: 2 approved]. F1000 Res. 2017;6:1760.
Article
Google Scholar
Soge OO, Queenan AM, Ojo KK, Adeniyi BA, Roberts MC. CTX-M-15 extended-spectrum (beta)-lactamase from Nigerian Klebsiella pneumoniae. J Antimicrob Chemother. 2006;57(1):24–30.
Article
CAS
Google Scholar
Otajevwo FD. Urinary tract infection among symptomatic outpatients visiting a tertiary hospital based in Midwestern Nigeria. Glob J Health Sci. 2013;5(2):187–99.
Article
CAS
Google Scholar
Akinduti PA, Olasehinde GI, Ejilude O, Taiwo OS, Obafemi YD. Fecal carriage and phylodiversity of community acquired bla TEM Enteric bacilli in Southwest Nigeria. Infect Drug Resist. 2018;11:2425–33.
Article
CAS
Google Scholar
Oli AGN, Ogbuagu VI, Ejikeugwu CP, Iroha IR, Ugwu MC, Ofomata CM, Okeke KN, Emechebe GO, Okoro JC, Okani CO, Onah SK. Multi-antibiotic resistance and factors affecting carriage of extended spectrum β-lactamase-producing enterobacteriaceae in pediatric population of enugu metropolis, Nigeria. Med Sci. 2019;7:104.
CAS
Google Scholar
Huai W, Ma QB, Zheng JJ, Zhao Y, Zhai QR. Distribution and drug resistance of pathogenic bacteria in emergency patients. World J Clin Cases. 2019;7(20):3175–84.
Article
Google Scholar
Yazdansetad S, Alkhudhairy MK, Najafpour R, Farajtabrizi E, Al-Mosawi RM, Saki M, Jafarzadeh E, Izadpour F, Ameri A. Preliminary survey of extended-spectrum β-lactamases (ESBLs) in nosocomial uropathogen Klebsiella pneumoniae in north-central Iran. Heliyon. 2019;5:e02349.
Article
Google Scholar
Humayun A, Siddiqui FM, Akram N, Saleem S, Ali A, Iqbal T, Kumar A, Kamran R, Bokhari H. Incidence of metallo-beta-lactamase-producing Klebsiella pneumoniae isolates from hospital setting in Pakistan. Int Microbiol. 2018. https://doi.org/10.1007/s10123-018-0006-1.
Article
PubMed
Google Scholar
Szabo O, Kocsis B, Szabo N, Kristof K, Szabo D. Contribution of OqxAB Efflux Pump in Selection of Fluoroquinolone-Resistant Klebsiella pneumoniae. Can J Infect Dis Med Microbiol. 2018. https://doi.org/10.1155/2018/4271638.
Article
PubMed
PubMed Central
Google Scholar
Maurya N, Jangra M, Tambat R, Nandanwar H. Alliance of efflux pumps with β-Lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microb Drug Resist. 2019;25(8):1155–63.
Article
CAS
Google Scholar
Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, Hakim MS, Meliala A, Aman AT, Nuryastuti T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13:20.
Article
CAS
Google Scholar
Alcántar-Curiel MD, Ledezma-Escalante CA, Jarillo-Quijada MD, Gayosso-Vázquez C, Morf-n-Otero R, Rodr-guez-Noriega E, Cedillo-Ram-rez ML, Santos-Preciado JI, Girón JA. Association of antibiotic resistance, cell adherence, and biofilm production with the endemicity of nosocomial Klebsiella pneumoniae. Biomed Res Int. 2018. https://doi.org/10.1155/2018/7012958.
Article
PubMed
PubMed Central
Google Scholar