Skip to main content
  • Research note
  • Open access
  • Published:

Cohort profile: why do people keep hurting their back?



Low back pain (LBP) is one of the most disabling and costly conditions worldwide. It remains unclear why many individuals experience persistent and recurrent symptoms after an acute episode whereas others do not. A longitudinal cohort study was established to address this problem. We aimed to; (1) evaluate whether promising and potentially modifiable biological, psychological, social and behavioural factors, along with their possible interactions, predict LBP outcome after an acute episode; (2) compare these factors between individuals with and without acute LBP; and (3) evaluate the time-course of changes in these factors from LBP onset. This paper outlines the methodology and compares baseline characteristics between acute LBP and control, and LBP participants with and without follow-up.


133 individuals with acute LBP and 74 pain-free individuals participated. Bio-psycho-social and behavioural measures were collected at baseline and 3-monthly for 12 months (LBP) or 3 months (control). Pain and disability were recorded fortnightly. Baseline characteristics were mostly similar between those who did and did not return for follow-up. Initial analyses of this cohort have revealed important insights into the pathways involved in acute-to-chronic LBP. These and future findings will provide new targets for treatment and prevention of persistent and recurrent LBP.


Low back pain (LBP) is the world’s leading cause of disability [1] and is associated with enormous and escalating costs to society [2]. Most of this burden is attributed to the condition when LBP becomes persistent or recurrent. Why some individuals with acute LBP recover, whereas others do not [3, 4], is largely unknown.

Although psychosocial factors have generally been considered stronger predictors of long-term outcome than diagnostic or injury-related factors [5, 6], they only explain a small proportion of the variance in outcome [6, 7]. Biological factors have largely been dismissed and the few that have been comprehensively addressed (e.g., muscle strength/endurance [8]) have little relation to outcome [9]. With this incomplete understanding of factors related to LBP outcome, it is not surprising that most treatments have modest effects at best [10] and are generally unable to prevent recurrence/persistence of pain [11].

We argue that three issues underlie a fresh approach to this problem. First, novel biological factors that could plausibly contribute to LBP outcome have been identified in cross-sectional studies, e.g., systemic inflammation, trunk muscle morphology/function, and processing of pain. Up until now, these potentially modifiable factors had not been tested longitudinally from the initial onset of symptoms, and analyses of the early time-points from the cohort presented in this paper are providing promising results [12,13,14]. Second, although interaction between biological, psychological and social factors is implied in the biopsychosocial model of pain, this interaction has received little attention in past longitudinal studies of LBP outcome. Again, early analyses from the present cohort have revealed interaction between features such as depression, cytokines and poor LBP outcome [12,13,14,15,16]. Third, there is growing evidence that behavioural factors such as sleep interact with the “biopsychosocial” components of LBP, but their contribution to outcome is unknown. This too has been supported by early observations [12, 14]. Further, little is known of the time course of changes in each of the biopsychosocial domains over 12 months following an acute LBP episode. There is strong foundation to evaluate whether candidate biological factors, along with their possible interaction with psychosocial factors, contribute to the transition from acute LBP to that of persistent/recurrent symptoms.

The purpose of this paper is to provide a profile of a cohort study that aims to; (1) evaluate whether outcome after an acute episode of LBP can be predicted by the most promising bio-psycho-social factors and/or the interactions between them; (2) compare these factors between individuals with and without acute LBP; and (3) evaluate the time course of changes in these factors following LBP onset. This paper outlines the participants, measures and data collection schedule, and compares baseline characteristics between acute LBP and control, and follow-up and non-follow-up LBP participants.

Main text


Study design

This longitudinal cohort study involved measures of variables within the biological, psychological and social domains (Table 1) at multiple time-points for 12 months (Additional file 1: Table S1). Measures of sleep, physical activity, alcohol consumption and smoking were grouped separately in a “behavioural” domain as they cross between classical domains. Eligible participants completed a series of detailed online questionnaires related to their pain and disability level, health, demographics, behaviour, and psychosocial status within 24 h of undertaking a laboratory-based session (~ 4 h) at the University of Queensland to assess biological variables. Measures (laboratory-based biological measures and online questionnaires) were repeated at 3, 6 and 9 months for LBP participants, and at 3 months for control participants. At 12 months, questionnaires were completed by all participants in the LBP group in addition to a separate 12-month recall questionnaire relating to the trajectory of their LBP since initial assessment for the study. Participants were also instructed (and reminded) via email to report their pain and disability level every fortnight for 3 (controls) or 12 months (LBP) via an online survey. For some analyses that have been conducted to date, these pain and disability data have been used to classify LBP participants as either “unrecovered”, “partially recovered” or “recovered” at follow-up (for details see Additional file 1: Table S2).

Table 1 Detailed description of measures

Participant recruitment

A total of 1849 individuals from Brisbane (and surrounds), Australia, were screened between April 2012 and September 2017 (Fig. 1). Participants were recruited through advertisements around the University campus and local community, social media, three nearby hospitals and via a professional recruitment agency (Trialfacts).

Fig. 1
figure 1

Cohort flow diagram

Screening was conducted using two different methods. Initially, eligibility was determined via email and/or phone, and when this method was used the reason(s) for exclusion at this initial screening were not recorded. This was replaced with an automated online screening questionnaire from April 2014, with reasons for exclusion recorded. The inclusion and exclusion criteria for LBP participants are outlined in Additional file 1: Table S3. Participants did not need to be experiencing their first ever LBP episode. Previous LBP was recorded for inclusion as a covariate. Control participants were included if they had not experienced LBP within the last month in addition to meeting the exclusion criteria in Additional file 1: Table S3.

At the first laboratory testing session (after initial screening), eligibility for inclusion were confirmed using data from the baseline questionnaire (completed within 24 h of the first laboratory-based session), to ensure that the participant’s average level of pain and LBP-related disability in the past week exceeded the inclusion threshold (≥ 1/10 for pain; ≥ 1/24 for disability). Potential control participants who reported a score > 0 on a 0 (“no pain”) to 10 (“worst pain imaginable”) numerical rating scale (NRS) and/or the Roland Morris Disability Questionnaire (RMDQ [35], [for definition of measures see Table 1]), or provided no scores were excluded from the study (N = 14). Potential LBP participants who reported < 1 on the pain NRS and/or the RMDQ, or provided no scores in the past week were excluded from the study (N = 8). After data collection, criteria for exclusion were identified for two participants with LBP (multiple sclerosis [N = 1], duration of LBP > 14 days [N = 1]) and two control participants (no pain/disability data [N = 1], pain/injury in another body region [N = 1]). These participants were excluded from the dataset. The final cohort included 133 and 74 participants in the LBP and control groups, respectively, for analyses.


Details of the measures and at what time-point(s) they were implemented are presented in Table 1 and Additional file 1: Table S1. All variables were measured in a standardised order for each participant. Biological measures were those we considered to be the most promising candidate factors for predicting LBP recurrence/persistence based on previous research and plausible rationales founded on clinical, epidemiological and fundamental research. For psychological measures, we considered three key domains of relevance in LBP: cognitive (expectations, beliefs, and perceptions concerning pain) [6, 36,37,38], emotional (distress, anxiety, and depression) [5], and behavioural (coping, pain behaviour, and activity/activity avoidance) [6, 36, 37]. Social measures were selected based on the Multinational Musculoskeletal Inception Cohort Study (MMICS) guidelines [39]. These guidelines were developed by an international expert team with review of the best available evidence from systematic/narrative reviews and expert consensus. As it was not our intention to withhold treatment over the study period, we collected information regarding health care and medication use so that treatment variables can be included as covariates. The total number of variables was restricted to limit the required participant sample size, minimise the potential for over-fitting, and for cost–benefit.

Sample size

A sample size of 217 was calculated based on power to detect predictor variables using complex multiple regression models (i.e., 28 predictor variables, 5 a priori selected interactions) and growth curve modelling methods, while allowing for loss to follow-up. The planned sample size was not achieved due to feasibility issues as outlined in the “limitations” section. Although the achieved sample size (N = 133) limits the ability to examine numerous interactions simultaneously, reduced model sizes and alternative methods (e.g., cluster analysis) have been applied successfully on data from this cohort [12,13,14,15,16].

Data analysis

All questionnaire-based measures (that could be quantitatively analysed) at baseline were compared between: (1) LBP and control participants, and (2) LBP participants who did and did not follow-up at 3, 6, 9 and 12 months.


Participant characteristics at baseline

The characteristics of the study participants are described in Additional file 1: Table S4. Compared to controls, LBP participants were/had: taller and heavier, a higher BMI, a higher prevalence of comorbidities, a higher incidence of previous LBP, higher depressive and pain catastrophizing symptoms, higher self-reported job demands, more sick days (over the last 12 months), poorer sleep quality, more likely to have a history of cigarette smoking, and more likely to have performed vigorous physical activity on less days in the previous week.

Participant attrition

Of the 133 eligible acute LBP participants who were enrolled in the study and provided baseline data, 35 (26%) were lost to follow-up for their laboratory-based measures (i.e., did not attempt/complete any biological measures) at 3 months, a further 9 at 6 months (total lost to follow-up = 44, 33%), and a further 5 at 9 months (total lost to follow-up = 49, 37%). As biological measures were not performed at 12 months, all participants were invited to complete the standard 3-montly questionnaire in addition to a separate recall questionnaire at 12 months, irrespective of whether or not they had continued or dropped out earlier. One or both of these were fully/partly completed by all but 41 of the 133 LBP participants who started the study (follow-up at 12 months: N = 92). For participants that did follow-up, Additional file 1: Table S5 shows the number of those that provided valid data for each of the 3-monthly questionnaire-based measures at each respective time-point. Ten control participants did not return for follow-up at 3 months. With respect to the completion rate of fortnightly pain (NRS) and disability (RMDQ) questionnaires, 85% (1505 of 1770) were completed by LBP participants who were retained for follow-up (i.e., up to 3, 6, 9 or 12 months) within 7 days of each questionnaire being issued, and 91% (282 of 310) were completed by control participants (i.e., up to 3 months).

Comparison of follow-up and non-follow-up participants

Comparison of baseline characteristics between LBP participants who did and did not follow-up for laboratory-based measures at 3, 6 and 9 months, and questionnaire measures at 12 months, revealed some differences, as shown in Table 2.

Table 2 Comparison of baseline characteristics between participants with LBP who did (FU) and did not (NFU) follow-up at 3, 6, 9 and 12 months


This paper profiles the only acute LBP cohort in which detailed biological, psychological, social and behavioural factors have been longitudinally and frequently collected, to date. The cohort has great potential to provide unique insight into the features that may predict and/or mediate long-term outcome [40].

The findings of baseline (acute LBP) characteristics presented here provide a foundation for future longitudinal analyses. Whether the findings can be generalised to a larger or clinical sample of individuals with early-acute LBP requires further and detailed studies of the condition during the early-acute phase. Despite the rate of loss to follow-up, most occurred after the first session, and baseline characteristics were generally similar between those who did and not return for follow-up.

Initial analyses of this cohort have revealed specific immune and nervous system features associated with the transition to persistent/recurrent LBP, and that various psychological and behavioural factors shape these relationships [12,13,14,15,16]. Ongoing analyses focus on elucidating the role of trunk neuromuscular, kinematic, mechanical and morphological properties, along with their possible interactions with psychosocial/behavioural features, in predicting LBP outcome.


  • The strict “acute LBP” inclusion criteria (i.e., within 2 weeks of onset of a LBP episode following 1 month without pain) rendered recruitment challenging – > 50% of screened individuals did not meet these criteria.

  • Study measures and follow-up procedures imposed substantial burden and explains the reported attrition.

  • Missing data due to attrition was high as is usual in longitudinal cohorts, and statistical approaches (e.g., mixed effects models) have been, and will continue to be, used to minimise bias.

  • The smaller than expected sample size limits the types of analyses to investigate interactions, and their interpretation; however, approaches such as cluster analyses have so far provided valuable insights.

  • It was not possible to collect blood samples at a standardised time during the day for each participant at each time-point. To account for the diurnal variations in cytokines [41], time of blood collection was recorded for inclusion as a potential confounder when interpreting cytokine levels.

Availability of data and materials

All data are held at The University of Queensland, Brisbane, Australia, and handled confidentially in a de-identified format. Currently, only the research team has access to the data. Proposals for collaborative analyses are invited to contact the lead author (Dr David Klyne: or principal investigator (Professor Paul Hodges:



Alcohol Use Disorders Identification Test


Body mass index


Centre for Epidemiological Studies of Depression Scale


Centre of pressure


Conditioned pain modulation


Cold pain threshold


C-reactive protein


Conditioning stimulus


Enzyme-linked immunosorbent assays




Fear-Avoidance Beliefs Questionnaire


Follow-up participants


Heat pain threshold


International Physical Activity Questionnaire


Interquartile range


Job Content Questionnaire






Low-Back Outcome Scale


Low back pain


Non-follow-up participants


Numerical rating scale


Pain Catastrophizing Scale


Pressure pain threshold


Pain Self-Efficacy Questionnaire


Pittsburgh Sleep Quality Index


Roland Morris Disability Questionnaire


Standard deviation


Tumor necrosis factor


Test stimulus


  1. Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann RheumDis. 2014;73(6):968–74.

    Article  Google Scholar 

  2. Dagenais S, Caro J, Haldeman S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008;8(1):8–20.

    Article  PubMed  Google Scholar 

  3. Pengel LHM, Herbert RD, Maher CG, Refshauge KM. Acute low back pain: systematic review of its prognosis. Brit Med J. 2003;327(7410):323–5.

    Article  PubMed  Google Scholar 

  4. Henschke N, Maher CG, Refshauge KM, Herbert RD, Cumming RG, Bleasel J, et al. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. Brit Med J. 2008a.

    Article  PubMed  Google Scholar 

  5. Pincus T, Burton AK, Vogel S, Field AP. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine. 2002;1(27):109–20.

    Article  Google Scholar 

  6. Linton SJ. A review of psychological risk factors in back and neck pain. Spine. 2000;25(9):1148–56.

    Article  CAS  Google Scholar 

  7. Pincus T, Vogel S, Burton AK, Santos R, Field AP. Fear avoidance and prognosis in back pain: a systematic review and synthesis of current evidence. Arthritis Rheum. 2006;54(12):3999–4010.

    Article  PubMed  Google Scholar 

  8. Bieringsorensen F. Physical measurements as risk indicators for low-back trouble over a one-year period. Spine. 1984;9(2):106–19.

    Article  CAS  Google Scholar 

  9. Hamberg-van Reenen HH, Ariens GAM, Blatter BM, van Mechelen W, Bongers PM. A systematic review of the relation between physical capacity and future low back and neck/shoulder pain. Pain. 2007;130(1–2):93–107.

    Article  PubMed  Google Scholar 

  10. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15(Suppl 2):192–300.

    Article  Google Scholar 

  11. Deyo RA, Phillips WR. Low back pain A primary care challenge. Spine. 1996;21(24):2826–32.

    Article  CAS  PubMed  Google Scholar 

  12. Klyne DM, Moseley GL, Sterling M, Barbe MF, Hodges PW. Are Signs of central sensitization in acute low back pain a precursor to poor outcome? J Pain. 2019.

    Article  PubMed  Google Scholar 

  13. Klyne DM, Hodges PW. Circulating adipokines in predicting the transition from acute to persistent low back pain. Pain Med. 2020.

    Article  PubMed  Google Scholar 

  14. Klyne DM, Barbe MF, van den Hoorn W, Hodges PW. ISSLS PRIZE IN CLINICAL SCIENCE 2018: longitudinal analysis of inflammatory, psychological, and sleep-related factors following an acute low back pain episode-the good, the bad, and the ugly. Eur Spine J. 2018;27(4):763–77.

    Article  PubMed  Google Scholar 

  15. Klyne DM, Moseley GL, Sterling M, Barbe MF, Hodges PW. Individual Variation in Pain Sensitivity and Conditioned Pain Modulation in Acute Low Back Pain: Effect of Stimulus Type, Sleep, and Psychological and Lifestyle Factors. J Pain. 2018;19(8):942e-1-e-18.

    Article  Google Scholar 

  16. Klyne DM, Barbe MF, Hodges PW. Systemic inflammatory profiles and their relationships with demographic, behavioural and clinical features in acute low back pain. Brain Behav Immun. 2017;60:84–92.

    Article  PubMed  Google Scholar 

  17. Greenough CG, Fraser RD. Assessment of outcome in patients with low-back pain. Spine. 1992;17(1):36–41.

    Article  CAS  Google Scholar 

  18. Radloff LS. The CES-D Scale: a new self-report depression scale for research in the general population. ApplPsycholMeas. 1977;1:385–401.

    Google Scholar 

  19. Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O’Neill E. Factor structure, reliability, and validity of the pain catastrophizing scale. J Behav Med. 1997;20(6):589–605.

    Article  CAS  PubMed  Google Scholar 

  20. Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157–68.

    Article  CAS  Google Scholar 

  21. Nicholas MK. The pain self-efficacy questionnaire: taking pain into account. Eur J Pain. 2007;11(2):153–63.

    Article  PubMed  Google Scholar 

  22. Karasek R, Brisson C, Kawakami N, Houtman I, Bongers P, Amick B. The Job Content Questionnaire (JCQ): an instrument for internationally comparative assessments of psychosocial job characteristics. J Occup Health Psychol. 1998;3(4):322–55.

    Article  CAS  Google Scholar 

  23. Klyne DM, Schmid AB, Moseley GL, Sterling M, Hodges PW. Effect of types and anatomic arrangement of painful stimuli on conditioned pain modulation. J Pain. 2015;16(2):176–85.

    Article  PubMed  Google Scholar 

  24. Stokes M, Hides J, Elliott J, Kiesel K, Hodges P. Rehabilitative ultrasound imaging of the posterior paraspinal muscles. J Orthop Sports Phys Ther. 2007;37(10):581–95.

    Article  PubMed  Google Scholar 

  25. Cholewicki J, Silfies SP, Shah RA, Greene HS, Reeves NP, Alvi K, et al. Delayed trunk muscle reflex responses increase the risk of low back injuries. Spine. 2005;30(23):2614–20.

    Article  Google Scholar 

  26. Hodges P, van den Hoorn W, Dawson A, Cholewicki J. Changes in the mechanical properties of the trunk in low back pain may be associated with recurrence. J Biomech. 2009;42(1):61–6.

    Article  PubMed  Google Scholar 

  27. van Dieen JH, Koppes LL, Twisk JW. Low back pain history and postural sway in unstable sitting. Spine. 2010;35(7):812–7.

    Article  PubMed  Google Scholar 

  28. Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine. 2000;25(8):989–94.

    Article  CAS  PubMed  Google Scholar 

  29. Scholtes SA, Gombatto SP, Van Dillen LR. Differences in lumbopelvic motion between people with and people without low back pain during two lower limb movement tests. ClinBiomech. 2009;24(1):7–12.

    Article  Google Scholar 

  30. Bruijn SM, Meijer OG, van Dieen JH, Kingma I, Lamoth CJ. Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum. Gait Posture. 2008;27(3):455–62.

    Article  PubMed  Google Scholar 

  31. Lamoth CJ, Meijer OG, Wuisman PI, van Dieen JH, Levin MF, Beek PJ. Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine. 2002;27(4):E92-9.

    Article  PubMed  Google Scholar 

  32. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiat Res. 1989;28(2):193–213.

    Article  CAS  Google Scholar 

  33. Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J BehavNutr Phys Act. 2011;8:115.

    Article  Google Scholar 

  34. Babor TF, Higgins-Biddle J, Saunders JB, Monteiro MG. AUDIT: The Alcohol Use Disorders Identification Test: guidelines for use in primary care. Geneva: World Health Organization; 2001.

    Google Scholar 

  35. Roland M, Morris R. A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine. 1983;8(2):141–4.

    Article  CAS  Google Scholar 

  36. Mallen CD, Peat G, Thomas E, Dunn KM, Croft PR. Prognostic factors for musculoskeletal pain in primary care: a systematic review. Brit J Gen Pract. 2007;57(541):655–61.

    Google Scholar 

  37. Henschke N, Maher CG, Refshauge KM, Herbert RD, Cumming RG, Bleasel J, et al. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. BMJ. 2008b;337:a171.

    Article  PubMed  Google Scholar 

  38. Boersma K, Linton SJ. How does persistent pain develop? An analysis of the relationship between psychological variables, pain and function across stages of chronicity. Behav Res Ther. 2005;43(11):1495–507.

    Article  PubMed  Google Scholar 

  39. Pincus T, Santos R, Breen A, Burton AK, Underwood M, Multinational Musculoskeletal Inception Cohort Study C. A review and proposal for a core set of factors for prospective cohorts in low back pain: a consensus statement. Arthritis Rheum. 2008;59(1):14–24.

    Article  PubMed  Google Scholar 

  40. Klyne DM, Hodges PW. Letter to the editor concerning “Multiple confounders influence the association between low-grade systemic inflammation and musculoskeletal pain. A call for a prudent interpretation of the literature” by Schipholt et al. Spine J. 2019;19(11):1899–900.

    Article  PubMed  Google Scholar 

  41. Petrovsky N, McNair P, Harrison LC. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine. 1998;10(4):307–12.

    Article  CAS  PubMed  Google Scholar 

Download references




This research was funded by the National Health and Medical Research Council (NHMRC) of Australia (Project Grant: ID631369; Program Grant: APP1091302). PWH supported by NHMRC Fellowship APP1102905. GLM supported by NHMRC Fellowship ID1061279. MS supported by NHMRC Fellowship APP1002489. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations



Conceived and designed the study: DK, PH, WVDH, MB, JC, AK, LM, MN and MS. Recruitment of participants: DK, LO, RP and GR. Analysed the data: DK, PH, WVDH and RM. Wrote the manuscript: DK and PH. All authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paul W. Hodges.

Ethics declarations

Ethics approval and consent to participate

The study was approved by The University of Queensland’s Human Research Ethics Committee (ID: 2010000045), Royal Brisbane & Women’s Hospital Human Research Ethics Committee (ID: HREC/13/QRBW/268), and the Uniting Care Health Human Research Ethics Committee (ID: 1404). All participants provided written informed consent, were informed of their right to withdraw from the study at any time without penalty, and were informed of the study purpose.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1.

Additional Tables.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyne, D.M., van den Hoorn, W., Barbe, M.F. et al. Cohort profile: why do people keep hurting their back?. BMC Res Notes 13, 538 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: