Weng Y, Sun Z. Major cucurbit crops. In: Wang Y-H, Behera TK, Kole C, editors. Genetics, genomics and breeding of cucurbits. Boca Raton: CRC Press; 2012. p. 1–16. https://doi.org/10.1201/b11436.
Chapter
Google Scholar
McCreight JD. Cultivation and uses of cucurbits. In: Grumet, Rebecca Katzir N, Garcia-Mas J, editors. Genetics and genomics of Cucurbitaceae. Cham: Springer International Publishing; 2016. p. 1–12.
Google Scholar
Lecoq H, Desbiez C. Viruses of Cucurbit crops in the mediterranean region. An ever-changing picture. In: Loebenstein G, Lecoq H, editors. Advances in virus research. Amsterdam: Elsevier; 2012. p. 67–126. https://doi.org/10.1016/b978-0-12-394314-9.00003-8.
Chapter
Google Scholar
Lecoq H. Cucurbits. In: Loebenstein G, Thottappilly G, editors. Virus and Virus-like diseases of major crops in developing countries. Dordrecht: Springer; 2003. p. 665–88. https://doi.org/10.1007/978-94-007-0791-7_26.
Chapter
Google Scholar
Adams I, Fox A. Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. In: Wang A, Zhou X, editors. Current research topics in plant virology. Cham: Springer International Publishing; 2016. p. 323–35. https://doi.org/10.1007/978-3-319-32919-2_14.
Chapter
Google Scholar
Massart S, Chiumenti M, DeJonghe K, Glover R, Haegeman A, Koloniuk I, et al. Virus detection by high-throughput sequencing of small RNAs: large-scale performance testing of sequence analysis strategies. Phytopathology. 2019;109:488–97.
Article
PubMed
Google Scholar
Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014;188:90–6. https://doi.org/10.1016/J.VIRUSRES.2014.03.029.
Article
CAS
PubMed
Google Scholar
Wu Q, Ding S-W, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu Rev Phytopathol. 2015;53:425–44. https://doi.org/10.1146/annurev-phyto-080614-120030.
Article
CAS
PubMed
Google Scholar
Ibaba JD, Laing MD, Gubba A. First report of a novel potyvirus from the Papaya ringspot virus cluster infecting Zucchini (Cucurbita pepo) in KwaZulu-Natal, Republic of South Africa. Plant Dis. 2015;99:1289. https://doi.org/10.1094/PDIS-02-15-0143-PDN.
Article
Google Scholar
Ibaba JD, Laing MD, Gubba A. Zucchini shoestring virus: a distinct potyvirus in the papaya ringspot virus cluster. Arch Virol. 2016;161:2321–3. https://doi.org/10.1007/s00705-016-2899-3.
Article
CAS
PubMed
Google Scholar
Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch Virol. 2017;162:2505–38. https://doi.org/10.1007/s00705-017-3358-5.
Article
CAS
PubMed
Google Scholar
Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, et al. ICTV virus taxonomy profile: Potyviridae. J Gen Virol. 2017;98:352–4. https://doi.org/10.1099/jgv.0.000740.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung BY-W, Miller WA, Atkins JF, Firth AE. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci. 2008;105:5897–902. https://doi.org/10.1073/pnas.0800468105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olspert A, Chung BY, Atkins JF, Carr JP, Firth AE. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 2015;16:995–1004. https://doi.org/10.15252/embr.201540509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodamilans B, Valli A, Mingot A, San León D, Baulcombe D, López-Moya JJ, et al. RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. J Virol. 2015;89:6965–7. https://doi.org/10.1128/jvi.00337-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST: architecture and applications. BMC Bioinform. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8. https://doi.org/10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ala-Poikela M, Goytia E, Haikonen T, Rajamaki M-L, Valkonen JPT. Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. J Virol. 2011;85:6784–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, et al. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol. 2007;81:13135–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Moya JJ, Wang RY, Pirone TP. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. J Gen Virol. 1999;80:3281–8.
Article
PubMed
Google Scholar
Romay G, Lecoq H, Desbiez C. Zucchini tigré mosaic virus is a distinct potyvirus in the papaya ringspot virus cluster: molecular and biological insights. Arch Virol. 2014;159:277–89.
Article
CAS
PubMed
Google Scholar
Desbiez C, Wipf-Scheibel C, Millot P, Verdin E, Dafalla G, Lecoq H. New species in the papaya ringspot virus cluster: insights into the evolution of the PRSV lineage. Virus Res. 2017;241:88–94. https://doi.org/10.1016/J.VIRUSRES.2017.06.022.
Article
CAS
PubMed
Google Scholar
Kidanemariam DB, Sukal AC, Abraham AD, Njuguna JN, Stomeo F, Dale JL, et al. Molecular characterisation of a putative new polerovirus infecting pumpkin (Cucurbita pepo) in Kenya. Arch Virol. 2019;164:1717–21.
Article
CAS
PubMed
Google Scholar
Ibaba JD, Laing MD, Gubba A. Incidence and phylogeny of viruses infecting cucurbit crops in KwaZulu-Natal, Republic of South Africa. Crop Prot. 2015;75:46–54. https://doi.org/10.1016/j.cropro.2015.04.019.
Article
Google Scholar
Owolabi AT, Rabenstein F, Ehrig F, Maiss Edgar M, Vetten HJ. Strains of Moroccan watermelon mosaic virus isolated from Lagenaria breviflorus and Coccinia barteri in calabar, southeastern Nigeria. Int J Virol. 2012;8:258–70.
Article
Google Scholar
Menzel W, Abang MM, Winter S. Characterization of Cucumber vein-clearing virus, a whitefly (Bemisia tabaci G.)-transmitted carlavirus. Arch Virol. 2011;156:2309–11.
Article
CAS
PubMed
Google Scholar
Yakoubi S, Lecoq H, Desbiez C. Algerian watermelon mosaic virus (AWMV): a new potyvirus species in the PRSV cluster. Virus Genes. 2008;37:103–9.
Article
CAS
PubMed
Google Scholar
Arocha Y, Vigheri N, Nkoy-Florent B, Bakwanamaha K, Bolomphety B, Kasongo M, et al. First report of the identification of Moroccan watermelon mosaic virus in papaya in Democratic Republic of Congo. Plant Pathol. 2008;57:387. https://doi.org/10.1111/j.1365-3059.2007.01658.x.5.
Article
Google Scholar
Lecoq H, Dafalla G, Desbiez C, Wipf-Scheibel C, Delécolle B, Lanina T, et al. Biological and molecular characterization of Moroccan watermelon mosaic virus and a potyvirus isolate from Eastern Sudan. Plant Dis. 2001;85:547–52.
Article
CAS
PubMed
Google Scholar