Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Investig. 2010;120(4):939–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen KW, Damania B. Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett. 2010;289(2):140–50.
Article
CAS
PubMed
Google Scholar
Angius F, Uda S, Piras E, Spolitu S, Ingianni A, Batetta B, et al. Neutral lipid alterations in human herpesvirus 8-infected HUVEC cells and their possible involvement in neo-angiogenesis. BMC Microbiol. 2015;15:74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandran B. Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol. 2010;84(5):2188–99.
Article
CAS
PubMed
Google Scholar
Delgado T, Sanchez EL, Camarda R, Lagunoff M. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog. 2012;8(8):e1002866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caselli E, Rizzo R, Ingianni A, Contini P, Pompei R, Di Luca D. High prevalence of HHV8 infection and specific killer cell immunoglobulin-like receptors allotypes in Sardinian patients with type 2 diabetes mellitus. J Med Virol. 2014;86(10):1745–51.
Article
CAS
PubMed
Google Scholar
Ingianni A, Carta F, Reina A, Manai M, Desogus A, Pompei R. Prevalence of herpesvirus 8 infection in type 2 diabetes mellitus patients. Am J Infect Dis. 2007;3(3):123–7.
Article
CAS
Google Scholar
Ingianni A, Madeddu MA, Carta F, Reina A, Lai C, Pompei R. Epidemiology of human herpesvirus type 8 infection in cardiopathic patients. Online J Biol Sci. 2009;9(2):36–9.
Article
Google Scholar
Ingianni A, Piras E, Laconi S, Angius F, Batetta B, Pompei R. Latent herpesvirus 8 infection improves both insulin and glucose uptake in primary endothelial cells. New Microbiol. 2013;36(3):257–65.
CAS
PubMed
Google Scholar
Piras E, Madeddu MA, Palmieri G, Angius F, Contini P, Pompei R, et al. High prevalence of human herpesvirus 8 infection in diabetes type 2 patients and detection of a new virus subtype. Adv Exp Med Biol. 2017;973:41–51.
Article
CAS
PubMed
Google Scholar
Pompei R. The role of human herpesvirus 8 in diabetes mellitus type 2: state of the art and a medical hypothesis. Adv Exp Med Biol. 2016;901:37–45.
Article
CAS
PubMed
Google Scholar
Sobngwi E, Choukem SP, Agbalika F, Blondeau B, Fetita LS, Lebbe C, et al. Ketosis-prone type 2 diabetes mellitus and human herpesvirus 8 infection in sub-saharan africans. JAMA. 2008;299(23):2770–6.
Article
CAS
PubMed
Google Scholar
Bottero V, Chakraborty S, Chandran B. Reactive oxygen species are induced by Kaposi’s sarcoma-associated herpesvirus early during primary infection of endothelial cells to promote virus entry. J Virol. 2013;87(3):1733–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory SM, Wang L, West JA, Dittmer DP, Damania B. Latent Kaposi’s sarcoma-associated herpesvirus infection of monocytes downregulates expression of adaptive immune response costimulatory receptors and proinflammatory cytokines. J Virol. 2012;86(7):3916–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guilluy C, Zhang Z, Bhende PM, Sharek L, Wang L, Burridge K, et al. Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood. 2011;118(19):5344–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, Mesri EA. A role for virally induced reactive oxygen species in Kaposi’s sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal. 2013;18(1):80–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Feng J, Sun R. Oxidative stress induces reactivation of Kaposi’s sarcoma-associated herpesvirus and death of primary effusion lymphoma cells. J Virol. 2011;85(2):715–24.
Article
CAS
PubMed
Google Scholar
Ye F, Gao SJ. A novel role of hydrogen peroxide in Kaposi sarcoma-associated herpesvirus reactivation. Cell Cycle. 2011;10(19):3237–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter WE, Signorino MR. Diabetes mellitus: pathophysiology, etiologies, complications, management, and laboratory evaluation—special topics in diagnostic testing. Clin Chem. 2003;49(2):347.
Article
Google Scholar
Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr. 2018;12(3):455–62.
Article
PubMed
Google Scholar
Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes. 2012;61(1):4–13.
Article
CAS
PubMed
Google Scholar
Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118(11):3577–85.
Article
CAS
PubMed
Google Scholar
Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. 2010;20(1):72–7.
Article
CAS
PubMed
Google Scholar
Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320(14):915–24.
Article
CAS
PubMed
Google Scholar
Watanabe Y, Yamaguchi T, Ishihara N, Nakamura S, Tanaka S, Oka R, et al. 7-Ketocholesterol induces ROS-mediated mRNA expression of 12-lipoxygenase, cyclooxygenase-2 and pro-inflammatory cytokines in human mesangial cells: potential role in diabetic nephropathy. Prostaglandins Other Lipid Mediat. 2018;134:16–23.
Article
CAS
PubMed
Google Scholar
Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 2000;43(5):550–7.
Article
CAS
PubMed
Google Scholar
Bandeira Sde M, Guedes Gda S, da Fonseca LJ, Pires AS, Gelain DP, Moreira JC, et al. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev. 2012;2012:819310.
PubMed
Google Scholar
Endo K, Oyama T, Saiki A, Ban N, Ohira M, Koide N, et al. Determination of serum 7-ketocholesterol concentrations and their relationships with coronary multiple risks in diabetes mellitus. Diabetes Res Clin Pract. 2008;80(1):63–8.
Article
CAS
PubMed
Google Scholar
Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Investig. 2019;42(1):7–17.
Article
CAS
Google Scholar
Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38.
Article
CAS
PubMed
Google Scholar
WHO. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. 2006.
Angius F, Piras E, Spolitu S, Marras L, Armas SF, Ingianni A, et al. Anti-human herpesvirus 8 antibodies affect both insulin and glucose uptake by virus-infected human endothelial cells. J Infect Dev Ctries. 2018;12(6):485–91.
Article
CAS
PubMed
Google Scholar
Serreli G, Incani A, Atzeri A, Angioni A, Campus M, Cauli E, et al. Antioxidant effect of natural table olives phenolic extract against oxidative stress and membrane damage in enterocyte-like cells. J Food Sci. 2017;82(2):380–5.
Article
CAS
PubMed
Google Scholar
Templar J, Kon SP, Milligan TP, Newman DJ, Raftery MJ. Increased plasma malondialdehyde levels in glomerular disease as determined by a fully validated HPLC method. Nephrol Dial Transplant. 1999;14(4):946–51.
Article
CAS
PubMed
Google Scholar
Incani A, Serra G, Atzeri A, Melis MP, Serreli G, Bandino G, et al. Extra virgin olive oil phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids in human intestinal cells. Food Chem Toxicol. 2016;90:171–80.
Article
CAS
PubMed
Google Scholar
Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40(5):257–62.
Article
PubMed
PubMed Central
Google Scholar
Berchtold LA, Prause M, Storling J, Mandrup-Poulsen T. Cytokines and pancreatic beta-cell apoptosis. Adv Clin Chem. 2016;75:99–158.
Article
CAS
PubMed
Google Scholar
Kohnert KD, Freyse EJ, Salzsieder E. Glycaemic variability and pancreatic beta-cell dysfunction. Curr Diabetes Rev. 2012;8(5):345–54.
Article
CAS
PubMed
Google Scholar
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.
Article
CAS
PubMed
Google Scholar
Nogueira-Machado JA, Chaves MM. From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets. 2008;12(7):871–82.
Article
CAS
PubMed
Google Scholar
Caselli E, Fiorentini S, Amici C, Di Luca D, Caruso A, Santoro MG. Human herpesvirus 8 acute infection of endothelial cells induces monocyte chemoattractant protein 1-dependent capillary-like structure formation: role of the IKK/NF-kappaB pathway. Blood. 2007;109(7):2718–26.
Article
CAS
PubMed
Google Scholar
Chang PJ, Yang YH, Chen PC, Chen LW, Wang SS, Shih YJ, et al. Diabetes and risk of Kaposi’s sarcoma: effects of high glucose on reactivation and infection of Kaposi’s sarcoma-associated herpesvirus. Oncotarget. 2017;8(46):80595–611.
Article
PubMed
PubMed Central
Google Scholar
Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164(6):457–68.
Article
CAS
PubMed
Google Scholar
Vaya J, Szuchman A, Tavori H, Aluf Y. Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies. Chem Phys Lipids. 2011;164(6):438–42.
Article
CAS
PubMed
Google Scholar
Poli G, Sottero B, Gargiulo S, Leonarduzzi G. Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol Aspects Med. 2009;30(3):180–9.
Article
CAS
PubMed
Google Scholar
Lemaire S, Lizard G, Monier S, Miguet C, Gueldry S, Volot F, et al. Different patterns of IL-1beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7alpha-, 7beta-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett. 1998;440(3):434–9.
Article
CAS
PubMed
Google Scholar
Hayden JM, Brachova L, Higgins K, Obermiller L, Sevanian A, Khandrika S, et al. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J Lipid Res. 2002;43(1):26–35.
CAS
PubMed
Google Scholar
Dulak J, Jozkowicz A, Dichtl W, Alber H, Schwarzacher SP, Pachinger O, et al. Vascular endothelial growth factor synthesis in vascular smooth muscle cells is enhanced by 7-ketocholesterol and lysophosphatidylcholine independently of their effect on nitric oxide generation. Atherosclerosis. 2001;159(2):325–32.
Article
CAS
PubMed
Google Scholar
Deckert V, Duverneuil L, Poupon S, Monier S, Le Guern N, Lizard G, et al. The impairment of endothelium-dependent arterial relaxation by 7-ketocholesterol is associated with an early activation of protein kinase C. Br J Pharmacol. 2002;137(5):655–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sung SC, Kim K, Lee KA, Choi KH, Kim SM, Son YH, et al. 7-Ketocholesterol upregulates interleukin-6 via mechanisms that are distinct from those of tumor necrosis factor-alpha, in vascular smooth muscle cells. J Vasc Res. 2009;46(1):36–44.
Article
CAS
PubMed
Google Scholar
Nishio E, Watanabe Y. Oxysterols induced apoptosis in cultured smooth muscle cells through CPP32 protease activation and bcl-2 protein downregulation. Biochem Biophys Res Commun. 1996;226(3):928–34.
Article
CAS
PubMed
Google Scholar