Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv. 2020;41:107545.
Article
CAS
Google Scholar
Sandmann M, Schafberg M, Lippold M, Rohn S. Analysis of population structures of the microalga Acutodesmus obliquus during lipid production using multi-dimensional single-cell analysis. Sci Rep. 2018;8:6242.
Article
Google Scholar
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949–82.
Article
CAS
Google Scholar
Arun J, Gopinath KP, Rajan PSS, Felix V, Monica MJ, Malolan R. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresour Technol Rep. 2020;11:100477.
Article
Google Scholar
Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol. 2017;245:162–70.
Article
CAS
Google Scholar
Sevgili H, Sezen S, Yılayaz A, Aktaş Ö, Pak F, Aasen IM, Reitan KI, Sandmann M, Rohn S, Turan G, Kanyılmaz M. Apparent nutrient and fatty acid digestibilities of microbial raw materials for rainbow trout (Oncorhynchus mykiss) with comparison to conventional ingredients. Algal Res. 2019;42:101592.
Article
Google Scholar
Hensel B, Jakop U, Scheinpflug K, Schröter F, Sandmann M, Mühldorfer K, Schulze M. Low temperature preservation: influence of putative bioactive microalgae and hop extracts on sperm quality and bacterial load in porcine semen. Sustain Chem Pharm. 2021;19:100359.
Article
Google Scholar
Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31:1409–17.
Article
CAS
Google Scholar
Sonnleitner B, Locher G, Fiechter A. Biomass determination. J Biotechnol. 1992;25:5–22.
Article
CAS
Google Scholar
Gregory ME, Thornhill NF. The effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probe. Bioprocess Eng. 1997;16:339–44.
Article
CAS
Google Scholar
Münzberg M, Hass R, Khanh DDN, Reich O. Limitations of turbidity process probes and formazine as their calibration standard. Anal Bioanal Chem. 2017;409:719–28.
Article
Google Scholar
Bressel L, Hass R, Reich O. Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf. 2013;126:122–9.
Article
CAS
Google Scholar
Hass R, Münzberg M, Bressel L, Reich O. Industrial applications of photon density wave spectroscopy for in-line particle sizing. Appl Opt. 2013;52:1423–31.
Article
Google Scholar
Vargas Ruiz S, Hass R, Reich O. Optical monitoring of milk fat phase transition within homogenized fresh milk by photon density wave spectroscopy. Int Dairy J. 2012;26:120–6.
Article
CAS
Google Scholar
Werner P, Münzberg M, Hass R, Reich O. Process analytical approaches for the coil-to-globule transition of poly (N-isopropylacrylamide) in a concentrated aqueous suspension. Anal Bioanal Chem. 2017;409:807–19.
Article
CAS
Google Scholar
Hartwig A, Hass R. Monitoring lactose crystallization at industrially relevant concentrations by photon density wave spectroscopy. Chem Eng Technol. 2018;41:1139–46.
Article
CAS
Google Scholar
Häne J, Brühwiler D, Ecker A, Hass R. Real-time inline monitoring of zeolite synthesis by photon density wave spectroscopy. Microporous Mesoporous Mater. 2019;288:109580.
Article
Google Scholar
Bressel K, Müller W, Leser ME, Reich O, Hass R, Wooster TJ. Depletion-induced flocculation of concentrated emulsions probed by photon density wave spectroscopy. Langmuir. 2020;36:3504–13.
Article
CAS
Google Scholar
Gutschmann B, Schiewe T, Weiske MTH, Neubauer P, Hass R, Riedel SL. In-line monitoring of polyhydroxyalkanoate (PHA) production during high-cell-density plant oil cultivations using photon density wave spectroscopy. Bioengineering. 2019;6:85.
Article
CAS
Google Scholar
Pulz O, Broneske J, Waldeck P. IGV gmbh experience report, industrial production of microalgae under controlled conditions: innovative prospects. In: Richmond A, Hu Q, editors. Handbook of microalgal culture applied phycology and biotechnology. Chichester: Wiley; 2013. p. 445–60.
Chapter
Google Scholar
Schreiber C, Behrendt D, Huber G, Pfaff C, Widzgowski J, Ackermann B, Müller A, Zachleder V, Moudříková Š, Mojzeš P, Schurr U, Grobbelaar J, Nedbal L. Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Bioresour Technol. 2017;234:140–9.
Article
CAS
Google Scholar
Sandmann M, Smetana S, Heinz V, Rohn S. Comparative life cycle assessment of a mesh ultra-thin layer photobioreactor and a tubular glass photobioreactor for the production of bioactive algae extracts. Bioresour Technol. 2021;340:125657.
Article
CAS
Google Scholar
Hase E, Morimura Y, Tamiya H. Some data on the growth physiology of chlorella studied by the technique of synchronous culture. Arch Biochem Biophys. 1957;69:149–65.
Article
CAS
Google Scholar
Sandmann M, Lippold M, Saalfrank F, Odika CP, Rohn S. Multidimensional single-cell analysis based on fluorescence microscopy and automated image analysis. Anal Bioanal Chem. 2017;409:4009–19.
Article
CAS
Google Scholar
Garz A, Sandmann M, Rading M, Ramm S, Menzel R, Steup M. Cell-to-cell diversity in a synchronized chlamydomonas culture as revealed by single-cell analyses. Biophys J. 2012;103:1078–86.
Article
CAS
Google Scholar
Sandmann M, Garz A, Menzel R. Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms. Botany. 2015;94:53–64.
Article
Google Scholar
Graham MD. The coulter principle: foundation of an industry. J Assoc Lab Autom. 2003;8:72–81.
Article
Google Scholar
Wood WM, Lines RW. Particle size analysis using coulter counters. J Soc Cosmet Chem. 1966;17:197–211.
Google Scholar
Hass R, Reich O. Photon density wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization. Chem Phys Chem. 2011;12:2572–5.
Article
CAS
Google Scholar
Hass R, Munzke D, Ruiz SV, Tippmann J, Reich O. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by photon density wave spectroscopy. Anal Bioanal Chem. 2015;407:2791–802.
Article
CAS
Google Scholar
Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165–77.
Article
CAS
Google Scholar
Luzi G, McHardy C, Lindenberger C, Rauh C, Delgado A. Comparison between different strategies for the realization of flashing light effects pneumatic mixing and flashing illumination. Algal Res. 2019;38:101404.
Article
Google Scholar