Gottwald TR. Current epidemiological understanding of citrus huanglongbing. Annu Rev Phytopathol. 2010;48:119–39.
CAS
PubMed
Google Scholar
Leonard MT, Fagen JR, Davis-Richardson AG, Davis MJ, Triplett EW. Complete genome sequence of Liberibacter crescens BT-1. Stand Genom Sci. 2012;7:271–83.
CAS
Google Scholar
Jain M, Cai L, Fleites LA, Munoz-Bodnar A, Davis MJ, Gabriel DW. Liberibacter crescens is a cultured surrogate for functional genomics of uncultured pathogenic ‘Candidatus Liberibacter’ spp. and is naturally competent for transformation. Phytopathol. 2019;109:1811–9.
CAS
Google Scholar
Thapa SP, De Francesco A, Trinh J, Gurung FB, Pang Z, Vidalakis G, Wang N, Ancona V, Ma W, Coaker G. Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors. Mol Plant Pathol. 2020;21:716–31.
PubMed
PubMed Central
Google Scholar
Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De La Fuente L. Progress and obstacles in culturing ‘Candidatus Liberibacter asiaticus’, the bacterium associated with Huanglongbing. Phytopathol. 2019;109:1092–101.
CAS
Google Scholar
Fujiwara K, Iwanami T, Fujikawa T. Alterations of ‘Candidatus Liberibacter asiaticus’-associated microbiota decrease survival of ‘Ca. L. asiaticus’ in in vitro assays. Front Microbiol. 2018;9:3089.
PubMed
PubMed Central
Google Scholar
Ha PT, He R, Killiny N, Brown JK, Omsland A, Gang DR, Beyenal H. Host-free biofilm culture of “Candidatus Liberibacter asiaticus”, the bacterium associated with Huanglongbing. Biofilm. 2019;1:100005.
PubMed
PubMed Central
Google Scholar
Molki B, Call DR, Ha PT, Omsland A, Gang DR, Lindemann SR, Killiny N, Beyenal H. Growth of ‘Candidatus Liberibacter asiaticus’ in a host-free microbial culture is associated with microbial community composition. Enzyme Microb Tech. 2020;142:109691.
CAS
Google Scholar
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ‘Candidatus Liberibacter asiaticus’ in commercial grapefruit juice-based media formulations reveals common cell density-dependent transient behaviors. Phytopathol. 2021. https://doi.org/10.1094/PHYTO-06-21-0228-FI.
Article
Google Scholar
Attaran E, Berim A, Killiny N, Beyenal H, Gang DR, Omsland A. Controlled replication of ‘Candidatus Liberibacter asiaticus’ DNA in citrus leaf discs. Microb Biotechnol. 2020;13:747–59.
CAS
PubMed
PubMed Central
Google Scholar
Li T, Zhang L, Deng Y, Deng X, Zheng Z. Establishment of a Cuscuta campestris-mediated enrichment system for genomic and transcriptomic analyses of ‘Candidatus Liberibacter asiaticus’. Microb Biotechnol. 2021;14:737–51.
CAS
PubMed
PubMed Central
Google Scholar
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. Microbiome. 2018;6:1–14.
Google Scholar
Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution. BioEssays. 2013;35:829–37.
PubMed
PubMed Central
Google Scholar
Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. Genome streamlining and the elemental costs of growth. Trends Ecol Evol. 2010;25:75–80.
PubMed
Google Scholar
Pósfai G, Plunkett G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, De Arruda M, Burland V. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–6.
PubMed
Google Scholar
Peterson SN, Fraser CM. The complexity of simplicity. Genome Biol. 2001;2:1–7.
Google Scholar
Rancati G, Moffat J, Typas A, Pavelka N. Emerging and evolving concepts in gene essentiality. Nat Rev Genet. 2018;19:34.
CAS
PubMed
Google Scholar
Rees-Garbutt J, Chalkley O, Landon S, Purcell O, Marucci L, Grierson C. Designing minimal genomes using whole-cell models. Nat Commun. 2020;11:836.
CAS
PubMed
PubMed Central
Google Scholar
Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbio. 2003;48:77–84.
CAS
Google Scholar
Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA. 2002;99:966–71.
CAS
PubMed
PubMed Central
Google Scholar
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 2017;4:291–305.
CAS
PubMed
PubMed Central
Google Scholar
Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 2010;28:617–23.
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Munoz-Bodnar A, Gabriel DW. Concomitant loss of the glyoxalase system and glycolysis makes the uncultured pathogen “Candidatus Liberibacter asiaticus” an energy scavenger. App Environ Microbiol. 2017;83:e01670-e1617.
Google Scholar
Wulff NA, Zhang S, Setubal JC, Almeida NF, Martins EC, Harakava R, Kumar D, Rangel LT, Foissac X, Bové JM, Gabriel DW. The complete genome sequence of ‘Candidatus Liberibacter americanus’ associated with citrus Huanglongbing. Mol Plant-Microbe Interact. 2014;27:163–76.
CAS
PubMed
Google Scholar
Xavier JC, Patil KR, Rocha I. Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes. PLoS Comput Biol. 2018;14:e1006556.
PubMed
PubMed Central
Google Scholar
Fagen JR, Leonard MT, McCullough CM, Edirisinghe JN, Henry CS, Davis MJ, Triplett EW. Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of Liberibacters. PLoS ONE. 2014;9:e84469.
PubMed
PubMed Central
Google Scholar
Lai KK, Davis-Richardson AG, Dias R, Triplett EW. Identification of the genes required for the culture of Liberibacter crescens, the closest cultured relative of the Liberibacter plant pathogens. Front Microbiol. 2016;7:547.
PubMed
PubMed Central
Google Scholar
Black IM, Heiss C, Jain M, Muszyński A, Carlson RW, Gabriel DW, Azadi P. Structure of lipopolysaccharide from Liberibacter crescens is low molecular weight and offers insight into ‘Candidatus Liberibacter’ biology. Int J Mol Sci. 2021;22:11240.
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Cai L, Black IM, Azadi P, Carlson RW, Jones KM, Gabriel DW. ‘Candidatus Liberibacter asiaticus’-encoded BCP peroxiredoxin suppresses lipopolysaccharide-mediated defense signaling and nitrosative stress in planta. Mol Plant Microbe Interact. 2021. https://doi.org/10.1094/MPMI-09-21-0230-R.
Article
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
CAS
PubMed
PubMed Central
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
CAS
PubMed
Google Scholar
Tan Y, Wang C, Schneider T, Li H, de Souza RF, Tang X, Swisher Grimm K, Hsieh TF, Wang X, Li X, Zhang D. Comparative phylogenomic analysis reveals evolutionary genomic changes and novel toxin families in endophytic Liberibacter pathogens. Microbiol Spectr. 2021;9:e00509-e521.
CAS
PubMed Central
Google Scholar
Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF. Design and synthesis of a minimal bacterial genome. Science. 2016;351:6280.
Google Scholar
Zuñiga C, Peacock B, Liang B, McCollum G, Irigoyen SC, Tec-Campos D, Marotz C, Weng NC, Zepeda A, Vidalakis G, Mandadi KK. Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts. NPJ Syst Biol Appl. 2020;6:1–12.
Google Scholar
Cai L, Jain M, Sena-Vélez M, Jones KM, Fleites LA, Heck M, Gabriel DW. Tad pilus-mediated twitching motility is essential for DNA uptake and survival in all Liberibacters. PLoS ONE. 2021;16:e0258583.
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;2011(8):785–6.
Google Scholar
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of lipoprotein signal peptides in gram-positive bacteria with a hidden markov model. J Proteome Res. 2008;7:5082–93.
CAS
PubMed
Google Scholar
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004;2004(17):349–56.
Google Scholar
Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
CAS
PubMed
Google Scholar
Antczak M, Michaelis M, Wass MN. Environmental conditions shape the nature of a minimal bacterial genome. Nat Commun. 2019;10:3100.
PubMed
PubMed Central
Google Scholar
Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol. 2017;9:a023812.
PubMed
PubMed Central
Google Scholar
Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol. 2020;58:1–10.
CAS
PubMed
Google Scholar
Zhang W, Mitchell LA, Bader JS, Boeke JD. Synthetic genomes. Annu Rev Biochem. 2020;89:77–101.
CAS
PubMed
Google Scholar
Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep. 2019;20:e47012.
PubMed
PubMed Central
Google Scholar
Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes. 2016;2016(2):1–5.
Google Scholar
Zhang Y, Callaway EM, Jones JB, Wilson M. Visualisation of hrp gene expression in Xanthomonas euvesicatoria in the tomato phyllosphere. Eur J Plant Pathol. 2009;124:379–90.
CAS
Google Scholar
De Feyter R, Gabriel DW. Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum. J Bacteriol. 1991;173:6421–7.
PubMed
PubMed Central
Google Scholar
Ma NJ, Moonan DW, Isaacs FJ. Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering. Nat Protoc. 2014;9:2285–300.
CAS
PubMed
PubMed Central
Google Scholar
Sena-Vélez M, Holland SD, Aggarwal M, Cogan NG, Jain M, Gabriel DW, Jones KM. Growth dynamics and survival of Liberibacter crescens BT-1, an important model organism for the citrus huanglongbing pathogen “Candidatus Liberibacter asiaticus”. App Environ Microbiol. 2019;85:e01656-e1719.
Google Scholar
Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJ. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol. 2021;19:225–40.
CAS
PubMed
Google Scholar