Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007;28(1):55–65.
Article
CAS
Google Scholar
Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A. 2010;16(8):2429–40.
Article
CAS
Google Scholar
Trachsel L, Johnbosco C, Lang T, Benetti EM, Zenobi-Wong M. Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline) s for 3D bioprinting of cartilage-engineering constructs. Biomacromolecules. 2019;20(12):4502–11.
Article
CAS
Google Scholar
Ren Y, Zhang Y, Zhang H, Wang Y, Liu L, Zhang Q. A gelatin-hyaluronic acid double cross-linked hydrogel for regulating the growth and dual dimensional cartilage differentiation of bone marrow mesenchymal stem cells. J Biomed Nanotechnol. 2021;17(6):1044–57.
Article
CAS
Google Scholar
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng. 2021;5(2): 021502.
Article
CAS
Google Scholar
Jürgensen K, Aeschlimann D, Cavin V, Genge M, Hunzker E. A New Biological Glue for Cartilage-Cartilage Interfaces: Tissue Transglutaminase*. J Bone Joint Surg Am. 1997;79(2):185–93.
Article
Google Scholar
Ziadlou R, Rotman S, Teuschl A, Salzer E, Barbero A, Martin I, Alini M, Eglin D, Grad S. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng C. 2021;120: 111701.
Article
CAS
Google Scholar
Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci. 2021. https://doi.org/10.1039/D0BM01852J.
Article
PubMed
Google Scholar
Parratt K, Smerchansky M, Stiggersc Q, Roy K. Effect of hydrogel material composition on hBMSC differentiation into zone-specific neo-cartilage: engineering human articular cartilage-like tissue with spatially varying properties. J Mater Chem B. 2017;5(31):6237–48.
Article
CAS
Google Scholar
Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, Ai J. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci. 2018;6(6):1286–98.
Article
CAS
Google Scholar
Khanmohammadi M, Sakai S, Taya M. Fabrication of single and bundled filament-like tissues using biodegradable hyaluronic acid-based hollow hydrogel fibers. Int J Biol Macromol. 2017;104:204–12.
Article
CAS
Google Scholar
Zhang W, Zhang Y, Zhang A, Ling C, Sheng R, Li X, Yao Q, Chen J. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Mater Sci Eng C. 2021. https://doi.org/10.1016/j.msec.2021.112215.
Article
Google Scholar
Darr A, Calabro A. Synthesis and characterization of tyramine-based hyaluronan hydrogels. J Mater Sci: Mater Med. 2009;20(1):33–44.
CAS
Google Scholar
Khanmohammadi M, Sakai S, Ashida T, Taya M. Production of hyaluronic-acid-based cell-enclosing microparticles and microcapsules via enzymatic reaction using a microfluidic system. J Appl Poly Sci. 2016. https://doi.org/10.1002/app.43107.
Article
Google Scholar
Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4(4):880–7.
Article
CAS
Google Scholar
Bagheri S, Bagher Z, Hassanzadeh S, Simorgh S, Kamrava SK, Nooshabadi VT, Shabani R, Jalessi M, Khanmohammadi M. Control of cellular adhesiveness in hyaluronic acid-based hydrogel through varying degrees of phenol moiety cross-linking. J Biomed Mater Res Part A. 2021;109(5):649–58.
Article
CAS
Google Scholar
Khanmohammadi M, Sakai S, Taya M. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells. Int J Biol Macromol. 2017;97:308–16.
Article
CAS
Google Scholar
Qu X, Yan L, Liu S, Tan Y, Xiao J, Cao Y, Chen K, Xiao W, Li B, Liao X. Preparation of Silk Fibroin/Hyaluronic Acid Hydrogels with Enhanced Mechanical Performance by a Combination of Physical and Enzymatic Crosslinking. J Biomater Sci Polym. 2021. https://doi.org/10.1080/09205063.2021.1932070.
Article
Google Scholar
Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC, Machluf M, Venkatraman S. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevice. 2015;17(1):1–8.
Article
CAS
Google Scholar
Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotechnol. 2009;4(1):19–24.
Article
CAS
Google Scholar
Khanmohammadi M, Zolfagharzadeh V, Bagher Z, Soltani H, Ai J. Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking. Biomed Phy Eng Express. 2020;6(1): 015022.
Article
Google Scholar
Tomita K, Sakai S, Khanmohammadi M, Yamochi T, Hashimoto S, Anzai M, Morimoto Y, Taya M, Hosoi Y. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J Assist Reprod Genet. 2016;33(4):501–11.
Article
Google Scholar
Schuurmans CC, Mihajlovic M, Hiemstra C, Ito K, Hennink WE, Vermonden T. Hyaluronic acid and chondroitin sulfate (meth) acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials. 2021;268: 120602.
Article
CAS
Google Scholar
Davachi SM, Haramshahi SMA, Akhavirad SA, Bahrami N, Hassanzadeh S, Ezzatpour S, Hassanzadeh N, Kebria MM, Khanmohammadi M, Bagher Z. Development of chitosanhyaluronic acid hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. Mater Today Commun. 2022. https://doi.org/10.1016/j.mtcomm.2022.103230.
Article
Google Scholar