The global prevalence of diabetes mellitus is rapidly increasing as a result of urbanization, population aging and associated lifestyle changes. In 2021, the International Diabetic Federation (IDF) has estimated that 537 million adults (20–79 years) worldwide had DM (10.5% of the population in this age group), rising to 643 million (11.3%) and 783 million (12.2%) by 2030 and 2045 respectively. About 75% of them were living in low- and middle-income countries (LMICs). Egypt ranks the 10th position of countries with the highest prevalence and is expected to become in the 9th position 2045, the number of diabetic Egyptians has been estimated to be 10.9 million and expected to reach 13 million and 20 million by 2030 and 2045 respectively [1].
T2DM accounts for 90% of all DM cases. Development and progress of T2DM is influenced by multiple variables dichotomized into modifiable (obesity, physical inactivity, consumption of unhealthy diet, high blood pressure and smoking) and non-modifiable (age, family history, ethnicity, and genetics) risk factors [2]. The purpose of screening for DM is to identify asymptomatic individuals who are likely to have DM for further prophylactic intervention. The IDF has indicated that lifestyle modification by physical activity and/or healthy diet can prevent or delay the onset of T2DM [3].
Screening for DM has relied for long time on invasive, inconvenient, and expensive techniques including blood sampling for measurement of fasting plasma glucose (FPG), the 2-hour oral glucose tolerance test (OGTT), or the glycated hemoglobin (HbA1c) [4]. Several non-invasive screening risk score charts have been developed, tested, and proved to be feasible, less time consuming, and cost effective in detecting T2DM in numerous countries [5].
Instead of blood sampling, the scientists have come up with risk assessment scoring; the rationale of which implies combining set of the most effective behavioral and biological risk factors to create a scaled instrument for dual screening and predictive functions. Several risk scores have been derived worldwide. Among these are the American Diabetes Association Diabetes Risk Test (ADADRT) [6], the Finnish Diabetes Risk Score (FINDRISK) [7], the Canadian Diabetes Risk Questionnaire (CANRISK) [8], the German Diabetes Risk Score (GDRS) [9], and the Australian type 2 Diabetes Risk assessment tool (AUSDRISK) [10].
Testing the validity and reliability of the proposed screening risk tool before their usage is mandatory. Validity indicates whether the tool actually measures whatever it is developed, designed, and intended to measure, while reliability refers to the consistency of the results provided by the tool whether it provides the same results every time of its use, in other term repeatability [11].
In 2008, composed of 10 risk factors (namely age, gender, country of birth, family history of diabetes, history of high blood glucose, hypertension, smoking status, fruit and vegetable intake, physical activity, and waist circumference), the AUSDRISK has been developed by the Australian Commonwealth Department of Health and Ageing in a bid to estimate the probability of T2DM development within the next 5 years [10]. In a cross-sectional study, AUSDRISK performance was evaluated and endorsed its high sensitivity (81.3%) and specificity (57.7%) in screening T2DM among participants aged 25–74 years and not previously known to be diabetic before [12].
The high prevalence and burden of T2DM among Egyptians has urged us to test the reliability and validity of a recalibrated Arabic version of the AUSDRISK in the early prediction of risk of T2DM development for early preventive intervention.