Ranjan R, Bohra S, Asija MJ: Plant senescence: physiological, biochemical and molecular aspects. 2001, Agrobios (India)
Google Scholar
Sharkey TD: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment. 2005, 28 (3): 269-277. 10.1111/j.1365-3040.2005.01324.x.
Article
Google Scholar
Wong S, Cowan I, Farquhar G: Stomatal conductance correlates with photosynthetic capacity. 1979
Google Scholar
Bhattacharjee S: Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. CURRENT SCIENCE-BANGALORE-. 2005, 89 (7): 1113-
Google Scholar
Feller U, Anders I, Demirevska K: Degradation of rubisco and other chloroplast proteins under abiotic stress. Gen Appl Plant Physiology. 2008, 34: 5-18.
Google Scholar
Hassan I: Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica. 2006, 44 (2): 312-315. 10.1007/s11099-006-0024-7.
Article
Google Scholar
Roberts IN, Murray PF, Caputo CP, Passeron S, Barneix AJ: Purification and characterization of a subtilisin like serine protease induced during the senescence of wheat leaves. Physiologia Plantarum. 2003, 118 (4): 483-490. 10.1034/j.1399-3054.2003.00142.x.
Article
Google Scholar
Mae T, Kai N, Makino A, Ohira K: Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant and cell physiology. 1984, 25 (2): 333-
Google Scholar
Thoenen M, Herrmann B, Feller U: Senescence in wheat leaves: is a cysteine endopeptidase involved in the degradation of the large subunit of Rubisco?. Acta Physiologiae Plantarum. 2007, 29 (4): 339-350. 10.1007/s11738-007-0043-4.
Article
Google Scholar
Nakano R, Ishida H, Makino A, Mae T: In vivo fragmentation of the large subunit of ribulose-1, 5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions. Plant and cell physiology. 2006, 47 (2): 270-
Article
PubMed
Google Scholar
Mehta R, Fawcett T, Porath D, Mattoo AK: Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Journal of Biological Chemistry. 1992, 267 (4): 2810-
PubMed
Google Scholar
Pell E, Sinn J, Eckardt N, Johansen CV, Winner W, Mooney H: Response of radish to multiple stresses. II. Influence of season and genotype on plant response to ozone and soil moisture deficit. New Phytologist. 1993, 153-163.
Google Scholar
Eckardt N, Pell E: Oxidative modification of Rubisco from potato foliage in response to ozone. Plant Physiology and Biochemistry. 1995, 33 (3): 273-282.
Google Scholar
Desimone M, Henke A, Wagner E: Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant physiology. 1996, 111 (3): 789-
PubMed
PubMed Central
Google Scholar
Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T: The large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant and cell physiology. 1997, 38 (4): 471-
Article
PubMed
Google Scholar
Luo S, Ishida H, Makino A, Mae T: Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1, 5-bisphosphate carboxylase close to the active site. Journal of Biological Chemistry. 2002, 277 (14): 12382-10.1074/jbc.M111072200.
Article
PubMed
Google Scholar
Law RD, Crafts-Brandner SJ: Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant physiology. 1999, 120 (1): 173-10.1104/pp.120.1.173.
Article
PubMed
PubMed Central
Google Scholar
Allen KD, Staehelin LA: Resolution of 16 to 20 chlorophyII-protein complexes using a low lonic strength native green gel system* 1. Analytical biochemistry. 1991, 194 (1): 214-222. 10.1016/0003-2697(91)90170-X.
Article
PubMed
Google Scholar
Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG: Responses of antioxidants to paraquat in pea leaves (relationships to resistance). Plant physiology. 1997, 113 (1): 249-
PubMed
PubMed Central
Google Scholar
Shaaltiel Y, Gressel J: Kinetic analysis of resistance to paraquat in Conyza: evidence that paraquat transiently inhibits leaf chloroplast reactions in resistant plants. Plant physiology. 1987, 85 (4): 869-10.1104/pp.85.4.869.
Article
PubMed
PubMed Central
Google Scholar
Zhou YH, Yu JQ, Mao WH, Huang LF, Song XS, Nogués S: Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant and cell physiology. 2006, 47 (2): 192-
Article
PubMed
Google Scholar
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F: The DNA-binding protease, CND41, and the degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta. 2004, 220 (1): 97-104. 10.1007/s00425-004-1328-0.
Article
PubMed
Google Scholar
Casano LM, Lascano HR, Trippi VS: Hydroxyl radicals and a thylakoid-bound endopeptidase are involved in light-and oxygen-induced proteolysis in oat chloroplasts. Plant and cell physiology. 1994, 35 (2): 145-
Google Scholar
Križman M, Jakše J, Bari Evi D, Javornik B, Prošek M: Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agriculturae Slovenica. 2006, 87 (2): 427-433.
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976, 72 (1-2): 248-254. 10.1016/0003-2697(76)90527-3.
Article
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature. 1970, 227 (5259): 680-685. 10.1038/227680a0.
Article
PubMed
Google Scholar
Nakano Y, Asada K: Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and cell physiology. 1987, 28 (1): 131-
Google Scholar
Zlatev Z: Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnol Biotechnol Equip. 2009, 23: 438-441.
Article
Google Scholar
Popova L, Ananieva E, Hristova V, Christov K, Georgieva K, Alexieva V, Stoinova Z: Salicylic acid-and methyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. Bulg J Plant Physiol. 2003, 133: 152-
Google Scholar
Zlatev ZS, Yordanov IT: Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg J Plant Physiol. 2004, 30 (3-4): 3-18.
Google Scholar
Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH, Yu JQ: Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pesticide Biochemistry and Physiology. 2006, 86 (1): 42-48. 10.1016/j.pestbp.2006.01.005.
Article
Google Scholar
Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M: Oxidative damage in pea plants exposed to water deficit or paraquat. Plant physiology. 1998, 116 (1): 173-10.1104/pp.116.1.173.
Article
PubMed Central
Google Scholar
Ishida H, Makino A, Mae T: Fragmentation of the large subunit of ribulose-1, 5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329. Journal of Biological Chemistry. 1999, 274 (8): 5222-10.1074/jbc.274.8.5222.
Article
PubMed
Google Scholar
Kobza J, Edwards GE: Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant physiology. 1987, 83 (1): 69-10.1104/pp.83.1.69.
Article
PubMed
PubMed Central
Google Scholar
Abdullaev A, Djumaev B, Karimov KK: Influence of UV-radiation on the photosynthesis and photosynthetic carbon metabolism in high mountainous plants. BMC Plant Biology. 2005, 5 (Suppl 1): S1-10.1186/1471-2229-5-S1-S1.
Article
PubMed Central
Google Scholar