Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16: 6-21. 10.1101/gad.947102.
Article
PubMed
CAS
Google Scholar
Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science. 2001, 293: 1089-1093. 10.1126/science.1063443.
Article
PubMed
CAS
Google Scholar
Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E: Chromosome methylation patterns during mammalian preimplantation development. Genes and development. 1998, 12: 2108-2113. 10.1101/gad.12.14.2108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li E, Beard C, Jaenisch R: Role for DNA methylation in genomic imprinting. Nature. 1993, 366: 362-365. 10.1038/366362a0.
Article
PubMed
CAS
Google Scholar
Walsh CP, Chaillet JR, Bestor TH: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998, 20: 116-117. 10.1038/2413.
Article
PubMed
CAS
Google Scholar
Pogribny I, Raiche J, Slovack M, Kovalchuk O: Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun. 2004, 320: 1253-1261. 10.1016/j.bbrc.2004.06.081.
Article
PubMed
CAS
Google Scholar
Xu N, Azziz R, Goodarzi MO: Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertility and sterility. 2010, 94: 781-783. 10.1016/j.fertnstert.2009.10.020. e781
Article
PubMed
CAS
PubMed Central
Google Scholar
Ehrlich M: DNA methylation in cancer: too much, but also too little. Oncogene. 2002, 21: 5400-5413. 10.1038/sj.onc.1205651.
Article
PubMed
CAS
Google Scholar
Robertson KD: DNA methylation and human disease. Nat Rev Genet. 2005, 6: 597-610.
Article
PubMed
CAS
Google Scholar
Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM: DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics. 2011, 6: 828-837. 10.4161/epi.6.7.16500.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fraga MF, Esteller M: DNA methylation: a profile of methods and applications. BioTechniques. 2002, 33: 636-649. 632, 634
Google Scholar
Laird PW: Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet. 2010, 11: 191-203.
Article
PubMed
CAS
Google Scholar
Nan X, Meehan RR, Bird A: Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993, 21: 4886-4892. 10.1093/nar/21.21.4886.
Article
PubMed
CAS
PubMed Central
Google Scholar
Veenstra GJC, Bogdanovic O: DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009, 118: 549-565. 10.1007/s00412-009-0221-9.
Article
PubMed
PubMed Central
Google Scholar
Hendrich B, Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998, 18: 6538-6547.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, Nakao M: Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol. 2000, 20: 5107-5118. 10.1128/MCB.20.14.5107-5118.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MW, Clark SJ: Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics. 2011, 6: 34-44. 10.4161/epi.6.1.13313.
Article
PubMed
CAS
Google Scholar
Clouaire T, de Las Heras JI, Merusi C, Stancheva I: Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010, 38: 4620-4634. 10.1093/nar/gkq228.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rauch TA, Pfeifer GP: DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods. 2010, 52: 213-217. 10.1016/j.ymeth.2010.03.004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jorgensen HF, Adie K, Chaubert P, Bird AP: Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res. 2006, 34: e96-10.1093/nar/gkl527.
Article
PubMed
PubMed Central
Google Scholar
Cipriany BR, Zhao R, Murphy PJ, Levy SL, Tan CP, Craighead HG, Soloway PD: Single molecule epigenetic analysis in a nanofluidic channel. Anal Chem. 2010, 82: 2480-2487. 10.1021/ac9028642.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li M, Hu SL, Shen ZJ, He XD, Tao SN, Dong L, Zhu YY: High-performance capillary electrophoretic method for the quantification of global DNA methylation: application to methotrexate-resistant cells. Anal Biochem. 2009, 387: 71-75. 10.1016/j.ab.2008.12.033.
Article
PubMed
CAS
Google Scholar
Stach D, Schmitz OJ, Stilgenbauer S, Benner A, Dohner H, Wiessler M, Lyko F: Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res. 2003, 31: E2-10.1093/nar/gng002.
Article
PubMed
PubMed Central
Google Scholar
Oakeley EJ, Podesta A, Jost JP: Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA. 1997, 94: 11721-11725. 10.1073/pnas.94.21.11721.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gonzalgo ML, Jones PA: Mutagenic and epigenetic effects of DNA methylation. Mutat Res. 1997, 386: 107-118. 10.1016/S1383-5742(96)00047-6.
Article
PubMed
CAS
Google Scholar
Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrlich M: Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta. 1983, 740: 212-219. 10.1016/0167-4781(83)90079-9.
Article
PubMed
CAS
Google Scholar
Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N: Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010, 9: 506-518. 10.1111/j.1474-9726.2010.00577.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982, 10: 2709-2721. 10.1093/nar/10.8.2709.
Article
PubMed
CAS
PubMed Central
Google Scholar
Petronis A: Human morbid genetics revisited: relevance of epigenetics. Trends in genetics : TIG. 2001, 17: 142-146. 10.1016/S0168-9525(00)02213-7.
Article
PubMed
CAS
Google Scholar
Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y: Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004, 68: 196-204. 10.1046/j.1529-8817.2004.00081.x.
Article
PubMed
CAS
Google Scholar
Dunn BK: Hypomethylation: one side of a larger picture. Ann N Y Acad Sci. 2003, 983: 28-42. 10.1111/j.1749-6632.2003.tb05960.x.
Article
PubMed
CAS
Google Scholar
Tra J, Kondo T, Lu Q, Kuick R, Hanash S, Richardson B: Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mech Ageing Dev. 2002, 123: 1487-1503. 10.1016/S0047-6374(02)00080-5.
Article
PubMed
CAS
Google Scholar
Hornsby PJ, Yang L, Gunter LE: Demethylation of satellite I DNA during senescence of bovine adrenocortical cells in culture. Mutat Res. 1992, 275: 13-19. 10.1016/0921-8734(92)90004-9.
Article
PubMed
CAS
Google Scholar
Suzuki T, Fujii M, Ayusawa D: Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp Gerontol. 2002, 37: 1005-1014. 10.1016/S0531-5565(02)00061-X.
Article
PubMed
CAS
Google Scholar
Howlett D, Dalrymple S, Mays-Hoopes LL: Age-related demethylation of mouse satellite DNA is easily detectable by HPLC but not by restriction endonucleases. Mutat Res. 1989, 219: 101-106. 10.1016/0921-8734(89)90020-9.
Article
PubMed
CAS
Google Scholar
Powell JT, Whitney PL: Postnatal development of rat lung. Changes in lung lectin, elastin, acetylcholinesterase and other enzymes. The Biochemical journal. 1980, 188: 1-8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Imamura Y, Iwamoto K, Yanachi Y, Higuchi T, Otagiri M: Postnatal development, sex-related difference and hormonal regulation of acetohexamide reductase activities in rat liver and kidney. J Pharmacol Exp Ther. 1993, 264: 166-171.
PubMed
CAS
Google Scholar
Neiss WF, Klehn KL: The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry. 1981, 73: 251-268. 10.1007/BF00493025.
Article
PubMed
CAS
Google Scholar
Hiendleder S, Mund C, Reichenbach HD, Wenigerkind H, Brem G, Zakhartchenko V, Lyko F, Wolf E: Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol Reprod. 2004, 71: 217-223. 10.1095/biolreprod.103.026062.
Article
PubMed
CAS
Google Scholar