Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, Fukuda K: Infleunza-associated hospitilizations in the United States. JAMA. 2004, 292: 1333-1340. 10.1001/jama.292.11.1333.
PubMed
CAS
Google Scholar
Thompson MG, Shay DK, Zhou H, Bridges CB, Cheng PY, Burns E, Bresee JS, Cox NJ: Centers for Disease Control and Prevention. Estimates of deaths associated with seasonal influenza - United States, 1976–2007. MMWR. 2010, 59: 1057-1062.
Google Scholar
Bouvier NM, Palese P: The biology of influenza viruses. Vaccine. 2008, 26: D49-D53.
PubMed
CAS
PubMed Central
Google Scholar
McCauley JW, Hongo S, Kaverin NV, Kochs G, Lamb RA, Matrosovich MN, Perez DR, Palese P, Presti RM, Rimstad E: Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Edited by: King AMQ, Lefkowitz E, Adams MJ, Carstens EB. 2012, San Diego: Elsevier Academic Press, 749-761. 1
Ito T, Kawaoka Y: Host-range barrier of influenza A viruses. Vet Microbiol. 2000, 74 (1–2): 71-75.
PubMed
CAS
Google Scholar
Lamb RA: Influenza. Encyclopedia of Virology. Edited by: Mahy BWJ, van Regenmortel MHV. 2008, Academic Press, 95-104. 3
Google Scholar
Hay AJ, Gregory V, Douglas AR, Lin YP: The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci. 2001, 356 (1416): 1861-1870.
PubMed
CAS
PubMed Central
Google Scholar
Shaw ML, Palese P: Orthomyxoviruses: Molecular Biology. 2008, In: Encyclopedia of Virology. Third Edition edn, 483-489.
Google Scholar
Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology. 1990, 175 (1): 59-68. 10.1016/0042-6822(90)90186-U.
PubMed
CAS
Google Scholar
Lee BY, Bartsch SM, Willig AM: The economic value of a quadrivalent versus trivalent influenza vaccine. Vaccine. 2012, 30 (52): 7443-7446. 10.1016/j.vaccine.2012.10.025.
PubMed
PubMed Central
Google Scholar
Ambrose CS, Levin MJ: The rationale for quadrivalent influenza vaccines. Human Vaccines & Immunotherapeutics. 2012, 8 (1): 81-88. 10.4161/hv.8.1.17623.
Google Scholar
Kieft JS: Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci. 2008, 33 (6): 274-283. 10.1016/j.tibs.2008.04.007.
PubMed
CAS
PubMed Central
Google Scholar
Martinez-Salas E, Ramos R, Lafuente E, Lopez de Quinto S: Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol. 2001, 82: 973-984.
PubMed
CAS
Google Scholar
Clyde K, Harris E: RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol. 2006, 80 (5): 2170-2182. 10.1128/JVI.80.5.2170-2182.2006.
PubMed
CAS
PubMed Central
Google Scholar
Clever J, Sassetti C, Parslow TG: RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol. 1995, 69: 2101-2109.
PubMed
CAS
PubMed Central
Google Scholar
Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL: The role of a metastable RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA. 2006, 12 (8): 1521-1533. 10.1261/rna.89306.
PubMed
CAS
PubMed Central
Google Scholar
Abbink TE, Berkhout B: RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol. 2008, 82 (6): 3090-3098. 10.1128/JVI.01479-07.
PubMed
CAS
PubMed Central
Google Scholar
Cabello-Villegas J, Giles KE, Soto AM, Yu P, Mougin A, Beemon KL, Wang YX: Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor. RNA. 2004, 10 (9): 1388-1398. 10.1261/rna.7020804.
PubMed
CAS
PubMed Central
Google Scholar
Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J: Limited complementarity between U1 snRNA and a retroviral 5' splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res. 2009, 37 (22): 7429-7440. 10.1093/nar/gkp694.
PubMed
CAS
PubMed Central
Google Scholar
Brierley I, Gilbert RJ, Pennell S: RNA pseudoknots and the regulation of protein synthesis. Biochem Soc Trans. 2008, 36 (Pt 4): 684-689.
PubMed
CAS
Google Scholar
Liu B, Mathews DH, Turner DH: RNA pseudoknots: folding and finding. F1000 Biology Reports. 2010, 2: 8-
PubMed
PubMed Central
Google Scholar
Staple DW, Butcher SE: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 2005, 3 (6): e213-10.1371/journal.pbio.0030213.
PubMed
PubMed Central
Google Scholar
Brierley I, Pennell S, Gilbert RJ: Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. 2007, 5 (8): 598-610. 10.1038/nrmicro1704.
PubMed
CAS
Google Scholar
Giedroc DP, Cornish PV: Frameshifting RNA pseudoknots: structure and mechanism. Virus Res. 2009, 139 (2): 193-208. 10.1016/j.virusres.2008.06.008.
PubMed
CAS
PubMed Central
Google Scholar
Desselberger U, Racaniello VR, Zazra JJ, Palese P: The 3' and 5'-terminal sequences of influenza A, B, and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene. 1980, 8: 315-328. 10.1016/0378-1119(80)90007-4.
PubMed
CAS
Google Scholar
Flick R, Neumann G, Hoffman E, Neumeier E, Hobom G: Promoter elements in the influenza vRNA terminal structure. RNA. 1996, 2: 1046-1057.
PubMed
CAS
PubMed Central
Google Scholar
Noble E, Mathews DH, Chen JL, Turner DH, Takimoto T, Kim B: Biophysical analysis of influenza A virus RNA promoter at physiological temperatures. J Biol Chem. 2011, 286 (26): 22965-22970. 10.1074/jbc.M111.239509.
PubMed
CAS
PubMed Central
Google Scholar
Cheong H, Cheong C, Choi B: Secondary structure of the panhandle RNA of influenza virus A studied by NMR spectroscopy. Nucleic Acids Res. 1996, 24: 4197-4201. 10.1093/nar/24.21.4197.
PubMed
CAS
PubMed Central
Google Scholar
Brownlee GG, Sharps JL: The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter. J Virol. 2002, 76 (14): 7103-7113. 10.1128/JVI.76.14.7103-7113.2002.
PubMed
CAS
PubMed Central
Google Scholar
Crow M, Deng T, Addley M, Brownlee GG: Mutational analysis of the influenza virus cRNA promoter and identification of nucleotides critical for replication. J Virol. 2004, 78 (12): 6263-6270. 10.1128/JVI.78.12.6263-6270.2004.
PubMed
CAS
PubMed Central
Google Scholar
Mathews DH, Moss WN, Turner DH: Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol. 2010, 2 (12): a003665-
PubMed
CAS
PubMed Central
Google Scholar
Schroeder S: Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships. J Virol. 2009, 83: 6326-6334. 10.1128/JVI.00251-09.
PubMed
CAS
PubMed Central
Google Scholar
Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL: De novo prediction of structured RNAs from genomic sequences. Trends Biotechnol. 2010, 28 (1): 9-19. 10.1016/j.tibtech.2009.09.006.
PubMed
CAS
Google Scholar
Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J: A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res. 2004, 32 (16): 4925-4936. 10.1093/nar/gkh839.
PubMed
CAS
PubMed Central
Google Scholar
Lange SJ, Maticzka D, Mohl M, Gagnon JN, Brown CM, Backofen R: Global or local? Predicting secondary structure and accessibility in mRNAs. Nucleic Acids Res. 2012, 40 (12): 5215-5226. 10.1093/nar/gks181.
PubMed
CAS
PubMed Central
Google Scholar
Findeiss S, Engelhardt J, Prohaska SJ, Stadler PF: Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. Biochimie. 2011, 93 (11): 2019-2023. 10.1016/j.biochi.2011.07.023.
PubMed
CAS
Google Scholar
Moss WN, Priore SF, Turner DH: Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA. 2011, 17 (6): 991-1011. 10.1261/rna.2619511.
PubMed
CAS
PubMed Central
Google Scholar
Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol. 2005, 23 (11): 1383-1390. 10.1038/nbt1144.
PubMed
CAS
Google Scholar
Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA. 2005, 102 (7): 2454-2459. 10.1073/pnas.0409169102.
PubMed
CAS
PubMed Central
Google Scholar
Gruber AR, Findeiss S, Washietl S, Hofacker IL, Stadler PF: RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput. 2010, 15: 69-79.
Google Scholar
Simmonds P, Smith DB: Structural constraints on RNA virus evolution. J Virol. 1999, 73 (7): 5787-5794.
PubMed
CAS
PubMed Central
Google Scholar
Tuplin A, Evans DJ, Simmonds P: Detailed mapping of RNA secondary structures in core and NS5B-encoding region sequences of hepatitis C virus by RNase cleavage and novel bioinformatic prediction methods. J Gen Virol. 2004, 85 (Pt 10): 3037-3047.
PubMed
CAS
Google Scholar
Gultyaev AP, Heus HA, Olsthoorn RC: An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics. 2007, 23 (3): 272-276. 10.1093/bioinformatics/btl559.
PubMed
CAS
Google Scholar
Gultyaev AP, Olsthoorn RC: A family of non-classical pseudoknots in influenza A and B viruses. RNA Biol. 2010, 7 (2): 125-129. 10.4161/rna.7.2.11287.
PubMed
CAS
Google Scholar
Ilyinskii PO, Schmidt T, Lukashev D, Meriin AB, Thoidis G, Frishman D, Shneider AM: Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS. 2009, 13 (5): 421-430. 10.1089/omi.2009.0036.
PubMed
CAS
Google Scholar
Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D: The influenza virus resource at the National Center for Biotechnology Information. J Virol. 2008, 82 (2): 596-601. 10.1128/JVI.02005-07.
PubMed
CAS
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010, 27 (2): 221-224. 10.1093/molbev/msp259.
PubMed
CAS
Google Scholar
Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996, 12 (6): 543-548.
PubMed
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
PubMed
CAS
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33 (2): 511-518. 10.1093/nar/gki198.
PubMed
CAS
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30 (14): 3059-3066. 10.1093/nar/gkf436.
PubMed
CAS
PubMed Central
Google Scholar
Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics. 2008, 9: 474-10.1186/1471-2105-9-474.
PubMed
PubMed Central
Google Scholar
Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999, 288 (5): 911-940. 10.1006/jmbi.1999.2700.
PubMed
CAS
Google Scholar
Reuter JS, Mathews DH: RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010, 11: 129-10.1186/1471-2105-11-129.
PubMed
PubMed Central
Google Scholar
Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004, 101 (19): 7287-7292. 10.1073/pnas.0401799101.
PubMed
CAS
PubMed Central
Google Scholar
Mathews DH: Revolutions in RNA secondary structure prediction. J Mol Biol. 2006, 359 (3): 526-532. 10.1016/j.jmb.2006.01.067.
PubMed
CAS
Google Scholar
Mathews DH: Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA. 2004, 10 (8): 1178-1190. 10.1261/rna.7650904.
PubMed
CAS
PubMed Central
Google Scholar
Parisien M, Major F: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008, 452 (7183): 51-55. 10.1038/nature06684.
PubMed
CAS
Google Scholar
Sperschneider J, Datta A: DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model. Nucleic Acids Res. 2010, 38 (7): e103-10.1093/nar/gkq021.
PubMed
PubMed Central
Google Scholar
Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998, 37 (42): 14719-14735. 10.1021/bi9809425.
PubMed
CAS
Google Scholar
Cao S, Chen SJ: Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res. 2006, 34 (9): 2634-2652. 10.1093/nar/gkl346.
PubMed
CAS
PubMed Central
Google Scholar
Cao S, Chen SJ: Predicting structures and stabilities for H-type pseudoknots with interhelix loops. RNA. 2009, 15 (4): 696-706. 10.1261/rna.1429009.
PubMed
CAS
PubMed Central
Google Scholar
Buonagurio DA, Nakada S, Fitch WM, Palese P: Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. Virology. 1986, 153 (1): 12-21. 10.1016/0042-6822(86)90003-6.
PubMed
CAS
Google Scholar
Nobusawa E, Sato K: Comparison of the mutation rates of human influenza A and B viruses. J Virol. 2006, 80 (7): 3675-3678. 10.1128/JVI.80.7.3675-3678.2006.
PubMed
CAS
PubMed Central
Google Scholar
Yamashita M, Krystal M, Fitch WM, Palese P: Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology. 1988, 163 (1): 112-122. 10.1016/0042-6822(88)90238-3.
PubMed
CAS
Google Scholar
Air GM, Gibbs AJ, Laver WG, Webster RG: Evolutionary changes in influenza B are not primarily governed by antibody selection. Proc Natl Acad Sci U S A. 1990, 87 (10): 3884-3888. 10.1073/pnas.87.10.3884.
PubMed
CAS
PubMed Central
Google Scholar
Suzuki Y, Nei M: Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol. 2002, 19 (4): 501-509. 10.1093/oxfordjournals.molbev.a004105.
PubMed
Google Scholar
Paragas J, Talon J, O'Neill RE, Anderson DK, Garcia-Sastre A, Palese P: Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J Virol. 2001, 75 (16): 7375-7383. 10.1128/JVI.75.16.7375-7383.2001.
PubMed
CAS
PubMed Central
Google Scholar
Robb NC, Smith M, Vreede FT, Fodor E: NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol. 2009, 90 (Pt 6): 1398-1407.
PubMed
CAS
Google Scholar
Warf MB, Berglund JA: Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010, 35 (3): 169-178. 10.1016/j.tibs.2009.10.004.
PubMed
CAS
PubMed Central
Google Scholar
Blanchette M, Chabot B: A highly stable duplex structure sequesters the 5' splice site region of hnRNP A1 alternative exon 7B. RNA. 1997, 3 (4): 405-419.
PubMed
CAS
PubMed Central
Google Scholar
Singh NN, Singh RN, Androphy EJ: Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007, 35 (2): 371-389.
PubMed
CAS
PubMed Central
Google Scholar
Coleman TP, Roesser JR: RNA secondary structure: an important cis-element in rat calcitonin/CGRP pre-messenger RNA splicing. Biochemistry. 1998, 37 (45): 15941-15950. 10.1021/bi9808058.
PubMed
CAS
Google Scholar
Hermann T, Westhof E: Non-Watson-Crick base pairs in RNA-protein recognition. Chem Biol. 1999, 6 (12): R335-R343. 10.1016/S1074-5521(00)80003-4.
PubMed
CAS
Google Scholar
Giver L, Bartel DP, Zapp ML, Green MR, Ellington AD: Selection and design of high-affinity RNA ligands for HIV-1 Rev. Gene. 1993, 137 (1): 19-24. 10.1016/0378-1119(93)90246-Y.
PubMed
CAS
Google Scholar
Jang SB, Hung LW, Chi YI, Holbrook EL, Carter RJ, Holbrook SR: Structure of an RNA internal loop consisting of tandem C-A + base pairs. Biochemistry. 1998, 37 (34): 11726-11731. 10.1021/bi980758j.
PubMed
CAS
Google Scholar
Wilcox JL, Bevilacqua PC: A Simple Fluorescence Method for pK(a) Determination in RNA and DNA Reveals Highly Shifted pK(a)'s. J Am Chem Soc. 2013, 135 (20): 7390-7393. 10.1021/ja3125299.
PubMed
CAS
Google Scholar
Chen G, Kennedy SD, Turner DH: A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops. Biochemistry. 2009, 48 (24): 5738-5752. 10.1021/bi8019405.
PubMed
CAS
PubMed Central
Google Scholar
Bink HH, Hellendoorn K, van der Meulen J, Pleij CW: Protonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA. Proc Natl Acad Sci USA. 2002, 99 (21): 13465-13470. 10.1073/pnas.202287499.
PubMed
CAS
PubMed Central
Google Scholar
Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH: Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PloS ONE. 2013, 8 (9): e70615-10.1371/journal.pone.0070615.
PubMed
CAS
PubMed Central
Google Scholar
Yamashita M, Krystal M, Palese P: Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA. J Virol. 1988, 62 (9): 3348-3355.
PubMed
CAS
PubMed Central
Google Scholar
Sidrauski C, Walter P: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997, 90 (6): 1031-1039. 10.1016/S0092-8674(00)80369-4.
PubMed
CAS
Google Scholar
Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE: Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol Cell Biol. 1999, 19 (4): 2657-2671.
PubMed
CAS
PubMed Central
Google Scholar
Buratti E, Muro AF, Giombi M, Gherbassi D, Iaconcig A, Baralle FE: RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol. 2004, 24 (3): 1387-1400. 10.1128/MCB.24.3.1387-1400.2004.
PubMed
CAS
PubMed Central
Google Scholar
Hiller M, Zhang Z, Backofen R, Stamm S: Pre-mRNA secondary structures influence exon recognition. PLoS Genet. 2007, 3 (11): e204-10.1371/journal.pgen.0030204.
PubMed
PubMed Central
Google Scholar
Stewart SM, Pekosz A: The influenza C virus CM2 protein can alter intracellular pH, and its transmembrane domain can substitute for that of the influenza A virus M2 protein and support infectious virus production. J Virol. 2012, 86 (2): 1277-1281. 10.1128/JVI.05681-11.
PubMed
CAS
PubMed Central
Google Scholar
Furukawa T, Muraki Y, Noda T, Takashita E, Sho R, Sugawara K, Matsuzaki Y, Shimotai Y, Hongo S: Role of the CM2 protein in the influenza C virus replication cycle. J Virol. 2011, 85 (3): 1322-1329. 10.1128/JVI.01367-10.
PubMed
CAS
PubMed Central
Google Scholar
Hongo S, Sugawara K, Muraki Y, Kitame F, Nakamura K: Characterization of a second protein (CM2) encoded by RNA segment 6 of influenza C virus. J Virol. 1997, 71 (4): 2786-2792.
PubMed
CAS
PubMed Central
Google Scholar
Pekosz A, Lamb RA: The CM2 protein of influenza C virus is an oligomeric integral membrane glycoprotein structurally analogous to influenza A virus M2 and influenza B virus NB proteins. Virology. 1997, 237 (2): 439-451. 10.1006/viro.1997.8788.
PubMed
CAS
Google Scholar
Hongo S, Sugawara K, Nishimura H, Muraki Y, Kitame F, Nakamura K: Identification of a second protein encoded by influenza C virus RNA segment 6. J Gen Virol. 1994, 75 (Pt 12): 3503-3510.
PubMed
CAS
Google Scholar
Pekosz A, Lamb RA: Influenza C virus CM2 integral membrane glycoprotein is produced from a polypeptide precursor by cleavage of an internal signal sequence. Proc Natl Acad Sci USA. 1998, 95 (22): 13233-13238. 10.1073/pnas.95.22.13233.
PubMed
CAS
PubMed Central
Google Scholar
Hongo S, Sugawara K, Muraki Y, Matsuzaki Y, Takashita E, Kitame F, Nakamura K: Influenza C virus CM2 protein is produced from a 374-amino-acid protein (P42) by signal peptidase cleavage. J Virol. 1999, 73 (1): 46-50.
PubMed
CAS
PubMed Central
Google Scholar
Slobodskaya OR, Gmyl AP, Maslova SV, Tolskaya EA, Viktorova EG, Agol VI: Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon. Virology. 1996, 221 (1): 141-150. 10.1006/viro.1996.0360.
PubMed
CAS
Google Scholar
Verma B, Ponnuswamy A, Gnanasundram SV, Das S: Cryptic AUG is important for 48S ribosomal assembly during internal initiation of translation of coxsackievirus B3 RNA. J Gen Virol. 2011, 92 (Pt 10): 2310-2319.
PubMed
CAS
Google Scholar
Pavlakis GN, Lockard RE, Vamvakopoulos N, Rieser L, RajBhandary UL, Vournakis JN: Secondary structure of mouse and rabbit alpha- and beta-globin mRNAs: differential accessibility of alpha and beta initiator AUG codons towards nucleases. Cell. 1980, 19 (1): 91-102. 10.1016/0092-8674(80)90391-8.
PubMed
CAS
Google Scholar
Kozak M: Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005, 361: 13-37.
PubMed
CAS
Google Scholar
Kudla G, Murray AW, Tollervey D, Plotkin JB: Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009, 324 (5924): 255-258. 10.1126/science.1170160.
PubMed
CAS
PubMed Central
Google Scholar
Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH: The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS ONE. 2012, 7 (6): e38323-10.1371/journal.pone.0038323.
PubMed
CAS
PubMed Central
Google Scholar
Moss WN, Dela-Moss LI, Priore SF, Turner DH: The influenza A segment 7 mRNA 3' splice site pseudoknot/hairpin family. RNA Biol. 2012, 9 (11): 1305-1310. 10.4161/rna.22343.
PubMed
CAS
PubMed Central
Google Scholar
Warf MB, Diegel JV, von Hippel PH, Berglund JA: The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci USA. 2009, 106 (23): 9203-9208. 10.1073/pnas.0900342106.
PubMed
CAS
PubMed Central
Google Scholar
Honig A, Auboeuf D, Parker MM, O'Malley BW, Berget SM: Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol. 2002, 22 (16): 5698-5707. 10.1128/MCB.22.16.5698-5707.2002.
PubMed
CAS
PubMed Central
Google Scholar
Cheah MT, Wachter A, Sudarsan N, Breaker RR: Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007, 447 (7143): 497-500. 10.1038/nature05769.
PubMed
CAS
Google Scholar
Winkler W, Nahvi A, Breaker RR: Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002, 419 (6910): 952-956. 10.1038/nature01145.
PubMed
CAS
Google Scholar
Nemeroff ME, Utans U, Kramer A, Krug RM: Identification of cis-acting intron and exon regions in influenza virus NS1 mRNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Mol Cell Biol. 1992, 12 (3): 962-970.
PubMed
CAS
PubMed Central
Google Scholar
Plotch SJ, Krug RM: In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc Natl Acad Sci U S A. 1986, 83 (15): 5444-5448. 10.1073/pnas.83.15.5444.
PubMed
CAS
PubMed Central
Google Scholar
Havens MA, Duelli DM, Hastings ML: Targeting RNA splicing for disease therapy. Wiley Interdiscip Rev RNA. 2013
Google Scholar
Mei HY, Cui M, Heldsinger A, Lemrow SM, Loo JA, Sannes-Lowery KA, Sharmeen L, Czarnik AW: Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules. Biochemistry. 1998, 37 (40): 14204-14212. 10.1021/bi981308u.
PubMed
CAS
Google Scholar
Sucheck SJ, Wong CH: RNA as a target for small molecules. Curr Opin Chem Biol. 2000, 4 (6): 678-686. 10.1016/S1367-5931(00)00142-3.
PubMed
CAS
Google Scholar
Wilson WD, Li K: Targeting RNA with small molecules. Curr Med Chem. 2000, 7 (1): 73-98. 10.2174/0929867003375434.
PubMed
CAS
Google Scholar
Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, Childs-Disney JL: Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J Am Chem Soc. 2008, 130 (33): 11185-11194. 10.1021/ja803234t.
PubMed
CAS
Google Scholar
Labuda LP, Pushechnikov A, Disney MD: Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron. ACS Chem Biol. 2009, 4 (4): 299-307. 10.1021/cb800313m.
PubMed
CAS
PubMed Central
Google Scholar
Childs JL, Disney MD, Turner DH: Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Proc Natl Acad Sci USA. 2002, 99 (17): 11091-11096. 10.1073/pnas.172391199.
PubMed
CAS
PubMed Central
Google Scholar
Disney MD, Childs JL, Turner DH: New approaches to targeting RNA with oligonucleotides: inhibition of group I intron self-splicing. Biopolymers. 2004, 73 (1): 151-161. 10.1002/bip.10520.
PubMed
CAS
Google Scholar
Kierzek E: Binding of short oligonucleotides to RNA: studies of the binding of common RNA structural motifs to isoenergetic microarrays. Biochemistry. 2009, 48 (48): 11344-11356. 10.1021/bi901264v.
PubMed
CAS
Google Scholar
Watrin M, Dausse E, Lebars I, Rayner B, Bugaut A, Toulme JJ: Aptamers targeting RNA molecules. Methods Mol Biol. 2009, 535: 79-105. 10.1007/978-1-59745-557-2_6.
PubMed
CAS
Google Scholar