O’ Driscoll A, Kildea S, Doohan F, Spink J, Mullins E. The wheat–Septoria conflict: a new front opening up? Trends Plant Sci. 2014. (http://dx.doi.org/10.1016/j.tplants.2014.04.011).
Cohen L, Eyal Z. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathol. 1993;42(5):737–43.
Article
Google Scholar
Duncan KE, Howard RJ. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol Res. 2000;104(9):1074–82.
Article
Google Scholar
Kema G, Yu D, Ritjkenberg F, Shaw MW, Baayen RP. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Biochem Cell Biol. 1996;86(7):777–86.
Google Scholar
Rohel EA, Payne AC, Fraaije BA, Hollomon DW. Exploring infection of wheat and carbohydrate metabolism in Mycosphaerella graminicola transformants with differentially regulated green fluorescent protein expression. Mol Plant Microbe Interact. 2001;14(2):156–63.
Article
CAS
PubMed
Google Scholar
Shetty NP, Kristensen BK, Newman M-A, Moller K, Gregersen PL, Jorgensen HJL. Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol. 2003;2003(62):333–46.
Article
Google Scholar
Keon J, Antoniw J, Carzaniga R, Deller S, Ward JL, Baker JM, et al. Transcriptional adaptation of Mycosphaerella graminicola to Programmed Cell Death (PCD) of its susceptible wheat host. Mol Plant Microbe Interact. 2007;20(2):178–93.
Article
CAS
PubMed
Google Scholar
Shetty NP, Mehrabi R, Lutken H, Haldrup A, Kema GH, Collinge DB, et al. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol. 2007;174(3):637–47.
Article
CAS
PubMed
Google Scholar
Ray S, Anderson J, Urmeev F, Goodwin S. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol. 2003;53(5):741–54.
Article
Google Scholar
Rudd J, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, et al. Transcriptome and metabolite profiling the infection cycle of Zymoseptoria tritici on wheat (Triticum aestivum) reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions, and a variation on the hemibiotrophic lifestyle definition. Plant Physiology. 2015;167(3):1158–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rudd JJ, Keon J, Hammond-Kosack KE. The wheat mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiol. 2008;147(2):802–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shetty NP, Jensen JD, Knudsen A, Finnie C, Geshi N, Blennow A, et al. Effects of β-1,3-glucan from Septoria tritici on structural defence responses in wheat. J Exp Bot. 2009;60(15):4287–300.
Article
CAS
PubMed
Google Scholar
Yang F, Li W, Jørgensen HJL. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS One. 2013;8(11):e81606.
Article
PubMed Central
PubMed
Google Scholar
Peraldi A, Beccari G, Steed A, Nicholson P. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 2011;11(1):100.
Article
PubMed Central
PubMed
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D/’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eversole K, Feuillet C, Mayer KFX, Rogers J. Slicing the wheat genome. Science. 2014;345(6194):285–7.
Article
CAS
PubMed
Google Scholar
Nishimura MT, Dangl JL. Arabidopsis and the plant immune system. Plant J. 2010;61(6):1053–66.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pagan I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, Garcia-Arenal F. Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos Trans R Soc Lond B Biol Sci. 2010;365(1548):1983–95.
Article
PubMed Central
PubMed
Google Scholar
Schlaich NL. Arabidopsis thaliana- the model plant to study host-pathogen interactions. Curr Drug Targets. 2011;12(7):955–66.
Article
CAS
PubMed
Google Scholar
Bossolini E, Wicker T, Knobel PA, Keller B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 2007;49(4):704–17.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A. 1989;86(16):6201–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 2004;101(26):9903–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bevan MW, Garvin DF, Vogel JP. Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotechnol. 2010;21(2):211–7.
Article
CAS
PubMed
Google Scholar
Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 2001;127(4):1539–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barbieri M, Marcel TC, Niks RE. Host Status of False Brome Grass to the Leaf Rust Fungus Puccinia brachypodii and the Stripe Rust Fungus P. striiformis. Plant Dis. 2011;95(11):1339–45.
Article
Google Scholar
Blümke A, Sode B, Ellinger D, Voigt CA. Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Mol Plant Pathol. 2014. doi:10.1111/mpp.12203, Article first published online: 22 OCT 2014
Falter C, Voigt C. Comparative cellular analysis of pathogenic fungi with a disease incidence in Brachypodium distachyon and Miscanthus x giganteus. Bioenerg Res. 2014;7(3):958–73.
Article
CAS
Google Scholar
Figueroa M, Alderman S, Garvin DF, Pfender WF. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility. PLoS One. 2013;8(2):e56857.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goddard R, Peraldi A, Ridout C, Nicholson P. Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare). Mol Plant Microbe Interact. 2014;27(10):1095–106.
Article
CAS
PubMed
Google Scholar
Peraldi A, Griffe L, Burt C, McGrann G, Nicholson P. Brachypodium distachyon exhibits compatible interactions with Oculimacula spp. and Ramularia collo‐cygni, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases. Plant Pathol. 2014;63(3):554–62.
Article
Google Scholar
Routledge AP, Shelley G, Smith JV, Talbot NJ, Draper J, Mur LA. Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol Plant Pathol. 2004;5(4):253–65.
Article
CAS
PubMed
Google Scholar
Sandoya GV, Buanafina MMO. Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiol Mol Plant Pathol. 2014;85(0):53–64.
Article
Google Scholar
Kema GHJ, Goodwin SB, Hamza S, Verstappen ECP, Cavaletto JR, Van der Lee TAJ, et al. A Combined Amplified Fragment Length Polymorphism and Randomly Amplified Polymorphism DNA Genetic Linkage Map of Mycosphaerella graminicola, the Septoria Tritici Leaf Blotch Pathogen of Wheat. Genetics. 2002;161(4):1497–505.
PubMed Central
CAS
PubMed
Google Scholar
Yang F, Melo-Braga MN, Larsen MR, Jorgensen HJ, Palmisano G. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics. 2013;12(9):2497–508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF, Hane JK, et al. Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis. PLoS Genet. 2011;7(6):e1002070.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kildea S. Fungicide resistance in the wheat pathogen Mycosphaerella graminicola. Doctoral Thesis. Queen’s University Belfast; 2009
Suffert F, Sache I, Lannou C. Early stages of septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathol. 2011;60(2):166–77.
Article
Google Scholar
King JE, Cook RJ, Melville SC. A review of Septoria diseases of wheat and barley. Ann Appl Biol. 1983;103(2):345–73.
Article
Google Scholar
Jones DG, Cooke BM. The Epidemiology of Septoria tritici and S. nodorum: I. A tentative key for assessing Septoria Tritici infection on wheat heads. Trans Br Mycol Soc. 1969;53(1):39–IN33.
Article
Google Scholar
Williams JR, Gareth Jones D. Epidemiology of Septoria tritici and S. Nodorum: VII. Effects of the previous year’s infection on disease development and yield in spring wheats. Trans Br Mycol Soc. 1973;61(1):33–9.
Article
Google Scholar
Brokenshire T. Wheat seed infection by Septoria tritici. Trans Br Mycol Soc. 1975;64(2):331–IN315.
Article
Google Scholar
Consolo VF, Albani CM, Berón CM, Salerno GL, Cordo CA. A conventional PCR technique to detect Septoria tritici in wheat seeds. Australas Plant Pathol. 2009;38(3):222–7.
Article
CAS
Google Scholar
Pammel LH, Weems JB, Lamson-Scribner F. Grasses of Iowa Part 1. Iowa Agric Exp Stn Bull. 1901;54:71–344.
Google Scholar
Eyal Z. The Septoria/Stagonospora blotch diseases of wheat: past, present, and future. In: Septoria and Stagonospora diseases of cereals: a compilation of global research. Mexico: CIMMY; 1999. p. 177–82.
Google Scholar
Seifbarghi S, Razavi M, Aminian H, Zare RHE. Studies on the host range of Septoria species on cereals and some wild grasses in Iran. Phytopathol Mediterr. 2009;48:422–9.
Google Scholar
Jing HC, Lovell D, Gutteridge R, Jenk D, Kornyukhin D, Mitrofanova OP, et al. Phenotypic and genetic analysis of the Triticum monococcum-Mycosphaerella graminicola interaction. New Phytol. 2008;179(4):1121–32.
Article
PubMed
Google Scholar
Van Ginkel M, McNab A, Krupinsky A. Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research. In: Proceedings of the Fifth International Septoria Workshop. Mexico: CIMMYT; 1999.
Google Scholar
Ayliffe M, Singh D, Park R, Moscou M, Pryor T. Infection of Brachypodium distachyon with Selected Grass Rust Pathogens. Mol Plant Microbe Interact. 2013;26(8):946–57.
Article
CAS
PubMed
Google Scholar
Barbieri M, Marcel TC, Niks RE, Francia E, Pasquariello M, Mazzamurro V, et al. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L. Genome. 2012;55(2):152–63.
Article
CAS
PubMed
Google Scholar
Luo N, Liu J, Yu X, Jiang Y. Natural variation of drought response in Brachypodium distachyon. Physiol Plant. 2011;141(1):19–29.
Article
CAS
PubMed
Google Scholar
Vijay N, Poelstra JW, Künstner A, JB W. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol. 2013;22(3):620–34.
Article
CAS
PubMed
Google Scholar
Scofield SR, Huang L, Brandt AS, Gill BS. Development of a virus-induced gene silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 2005;138(4):2165–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kellner R, Bhattacharyya A, Poppe S, Hsu TY, Brem RB, Stukenbrock EH. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs. Genome Biol Evol. 2014;6(6):1353–65.
Article
PubMed Central
PubMed
Google Scholar
Garvin DF, Gu YQ, Hasterok R, Hazen SPJ, Enkins G, Mockler TCMLAJ, et al. Development of genetic and genomic research resources for Brachypodium distachyon: a new model system for grass crop research. Crop Sci. 2008;48(1):69–84.
Article
Google Scholar
Garvin DF, McKenzie N, Vogel JP, Mockler TC, Blankenheim ZJ, Wright J, et al. An SSR-based genetic linkage map of the model grass Brachypodium distachyon. Genome. 2010;53(1):1–13.
Article
CAS
PubMed
Google Scholar