Givskov M, Eberl L, Moller S, Poulsen LK, Molin S. Responses to nutrient starvation in Pseudomonas Putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol. 1994;176:7–14.
PubMed Central
CAS
PubMed
Google Scholar
Kabir MS, Yamashita D, Noor R, Yamada M. Effect of σS on σE-directed cell lysis in Escherichia coli early stationary phase. J Mol Microbiol Biotechnol. 2004;8:189–94.
Article
CAS
PubMed
Google Scholar
Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005;24:1311–7.
Article
PubMed Central
PubMed
Google Scholar
Den Besten HMW, Mols M, Moezelaar R, Zwietering MH, Abee T. Phenotypic and transcriptomic analyses of mildly and severely salt-stressed Bacillus cereus ATCC 14579 cells. Appl Environ Microbiol. 2009;75:4111–9.
Article
Google Scholar
Noor R, Murata M, Yamada M. Oxidative stress as a trigger for growth phase-specific sigma-E dependent cell lysis in Escherichia coli. J Mol Microb Biotech. 2009;17:177–87.
Article
CAS
Google Scholar
Noor R, Murata M, Nagamitsu H, Klein G, Rain S, Yamada M. Dissection of sigma-E dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst Ppid. Genes Cells. 2009;14:885–99.
Article
CAS
PubMed
Google Scholar
Ju KS, Parales RE. Nitro-aromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol R. 2010;74:250–72.
Article
CAS
Google Scholar
Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16.
Article
CAS
PubMed
Google Scholar
Kivisaar M. Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol Microbiol. 2011;82:265–8.
Article
CAS
PubMed
Google Scholar
Deepika G, Karunakaran E, Hurley CR, Biggs CA, Charalampopoulos D. Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG. Microb Cell Fact. 2012;11:116.
Article
PubMed Central
PubMed
Google Scholar
Huillet E, Tempelars MH, Andre-Leroux G, Wanapaisan P, Bridoux L, Makhzamis S, Panbangred W, Martin-Verstraete I, Abee T, Lereclus D. PIcRa, a new quorum-sensing regulator from Bacillus cereus, play a role in oxidative stress response and cystein metabolism in stationary phase. PLoS One. 2012;7:e51047.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murata M, Noor R, Nagamitsu H, Tanaka S, Yamada M. Novel pathway directed by sigma-E to cause cell lysis in Escherichia coli. Genes Cells. 2012;17:234–47.
Article
CAS
PubMed
Google Scholar
Noor R, Islam Z, Munshi SH, Rahman F. Influence of temperature on Escherichia coli growth in different culture media. J Pure Appl Microbiol. 2013;7:899–904.
Google Scholar
Den Besten HMW, Effraimidou S, Abee T. Catalase activity as a biomarker for mild stress-induced robustness in Bacillus weihenstephanensis. Appl Environ Microbiol. 2013;79:57–62.
Article
Google Scholar
Shimizu K. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites. 2013;4:1–35.
Article
PubMed Central
PubMed
Google Scholar
Price CW, Fawcett P, Ceremonie H, Su N, Murphy CK, Youngman P. Genomewide analysis of the general stress response in Bacillus subtilis. Mol Microbiol. 2001;41:757–74.
Article
CAS
PubMed
Google Scholar
Phillips ZE, Strauch MA. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci. 2002;59:392–402.
Article
CAS
PubMed
Google Scholar
Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 1986;232:522–4.
Article
CAS
PubMed
Google Scholar
Sarniguet A, Kraus J, Henkels MD, Muehlchen AD, Loper JE. The sigma factor σS affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci USA. 1995;92:12255–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mayr B, Kaplan T, Lechner S, Scherer S. Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol. 1996;178:2916–25.
PubMed Central
CAS
PubMed
Google Scholar
Ramos-Gonzalez MI, Molin S. Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol. 1998;180:3421–31.
PubMed Central
CAS
PubMed
Google Scholar
Jorgensen F, Bally M, Chapon-Herve V, Michel G, Lazdunski A, et al. RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology. 1999;145:835–44.
Article
CAS
PubMed
Google Scholar
Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SHE, et al. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol. 1999;181:3890–7.
PubMed Central
CAS
PubMed
Google Scholar
Whistler CA, Stockwell VO, Loper JE. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2000;66:2718–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller CD, Kim YC, Anderson AJ. Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can J Microbiol. 2001;47:41–8.
Article
CAS
PubMed
Google Scholar
Miller CD, Mortensen WS, Braga GUL, Anderson AJ. The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-UV in sunlight. Curr Microbiol. 2001;43:374–7.
Article
CAS
PubMed
Google Scholar
Periago PM, Schaik WV, Abee T, Wouters JA. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl Environ Microbiol. 2002;68:3486–95.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stockwell VO, Loper JE. The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5. Microbiology. 2005;151:3001–9.
Article
CAS
PubMed
Google Scholar
Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett. 2005;243:251–8.
Article
CAS
PubMed
Google Scholar
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development, and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2012;76:91–9.
Article
Google Scholar
Munna MS, Nur IT, Rahman T, Noor R. Influence of exogenous oxidative stress on Escherichia coli cell growth, viability and morphology. Am J BioSci. 2013;1:59–62.
Article
Google Scholar
Munna MS, Tamanna S, Afrin MR, Sharif GA, Mazumder C, et al. Influence of aeration speed on bacterial colony forming unit (CFU) formation capacity. Am J Microbiol Res. 2014;2:47–51.
Article
Google Scholar
Nur IT, Munna MS, Noor R. Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp. and Salmonella spp. Turk J Biol. 2014;38:502–9.
Article
Google Scholar
Yamada M, Noor R, Nagamitsu H, Murta M. The higher temperature, the more oxidative stress and lysis in Escherichia coli. In: The 3rd International Conference on Fermentation Technology for Value Added Agricultural Products; Khon Kaen; 2009.
Nitta T, Nagamitsu H, Murata M, Izu H, Yamada M. Function of the sigma-E regulon in dead-cell lysis in stationary phase Escherichia coli. J Bacteriol. 2000;182:5231–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cappuccino JG, Shermen N. Microbiology; laboratory manuals. San Francisco: Benjamin/Cummings Publishing Company Incorporated; 1996.
Google Scholar
Hecker M, Volker U. General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol. 2001;44:35–91.
Article
CAS
PubMed
Google Scholar
Price CW: General stress response in Bacillus Subtilis and its closest relatives: From Genes to Cells. Washington, DC. Am Soc Microbiol 2002: 369–84.
Helmann JD, Wu MFW, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol. 2003;185:243–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M. Global analysis of the general stress response of Bacillus subtilis. J Bacteriol. 2001;183:5617–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hecker M, Pane-Farre J, Volker U. SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol. 2007;61:215–36.
Article
CAS
PubMed
Google Scholar
Hardwick SW, Pané-Farré J, Delumeau O, Marles-Wright J, Hecker M, Lewis RJ. Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis. Am Soc Biochem Mol Biol. 2007;283:11562–72.
Google Scholar
Nannapaneni P, Hertwig F, Depke M, Hecker M, Mäder U, Volker U, Steil L, van Hijum SA. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. Microbiology. 2012;158:696–707.
Article
CAS
PubMed
Google Scholar
Schumann W. The Bacillus subtilis heat shock stimulon. Cell Stress Chaperone. 2003;8:207–17.
Article
CAS
Google Scholar
Versteeg S, Escher A, Wende A, Wiegert T, Schumann W. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. J Bacteriol. 2003;185:466–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Munna MS, Humayun S, Noor R. Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Res Notes. 2015;8:369.
Article
PubMed Central
PubMed
Google Scholar
Noor R. Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SpringerPlus. 2015;4:599.
Article
Google Scholar