Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.
Article
PubMed
Google Scholar
Roberg-Larsen H, Strand MF, Krauss S, Wilson SR. Metabolites in vertebrate Hedgehog signaling. Biochem Biophys Res Commun. 2014;446:669–74.
Article
CAS
PubMed
Google Scholar
Phan BA, Toth PP. Dyslipidemia in women: etiology and management. Int J Womens Health. 2014;6:185–94.
PubMed
PubMed Central
Google Scholar
Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, Novack L. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol. 2009;201(482):e481–8.
Google Scholar
Huda SS, Sattar N, Freeman DJ. Lipoprotein metabolism and vascular complications in pregnancy. Clin Lipidol. 2009;4:91–102.
Article
CAS
Google Scholar
Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, Novack L. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol. 2009;201:482.e481–8.
Article
Google Scholar
Leiva A, de Medina CD, Salsoso R, Saez T, San Martin S, Abarzua F, Farias M, Guzman-Gutierrez E, Pardo F, Sobrevia L. Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction role of endothelial nitric oxide synthase and arginase II. Arterioscler Thromb Vasc Biol. 2013;33:2444–53.
Article
CAS
PubMed
Google Scholar
Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, Giguere Y, Masse A, Mounier C, Lafond J. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008;75:1054–62.
Article
CAS
PubMed
Google Scholar
Goharkhay N, Tamayo EH, Yin H, Hankins GD, Saade GR, Longo M. Maternal hypercholesterolemia leads to activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol. 2008;199:273.e271–273.e271.
Google Scholar
Napoli C, D’Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, Palinski W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100:2680–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of early lesions in children (FELIC) study. Lancet. 1999;354:1234–41.
Article
CAS
PubMed
Google Scholar
Eapen DJ, Valiani K, Reddy S, Sperling L. Management of familial hypercholesterolemia during pregnancy: case series and discussion. J Clin Lipidol. 2012;6:88–91.
Article
PubMed
Google Scholar
Liu J, Iqbal A, Raslawsky A, Browne RW, Patel MS, Rideout TC. Influence of maternal hypercholesterolemia and phytosterol intervention during gestation and lactation on dyslipidemia and hepatic lipid metabolism in offspring of Syrian golden hamsters. Mol Nutr Food Res. 2016;60:2151–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rideout TC, Movsesian C, Tsai YT, Iqbal A, Raslawsky A, Patel MS. Maternal phytosterol supplementation during pregnancy and lactation modulates lipid and lipoprotein response in offspring of apoE-deficient mice. J Nutr. 2015;145:1728–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghadasian MH, McManus BM, Nguyen LB, Shefer S, Nadji M, Godin DV, Green TJ, Hill J, Yang Y, Scudamore CH, Frohlich JJ. Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB J. 2001;15:2623–30.
Article
CAS
PubMed
Google Scholar
Rideout TC, Harding SV, Mackay D, Abumweis SS, Jones PJ. High basal fractional cholesterol synthesis is associated with nonresponse of plasma LDL cholesterol to plant sterol therapy. Am J Clin Nutr. 2010;92:41–6.
Article
CAS
PubMed
Google Scholar
Plosch T, Kruit JK, Bloks VW, Huijkman NC, Havinga R, Duchateau GS, Lin Y, Kuipers F. Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 transporter. J Nutr. 2006;136:2135–40.
PubMed
Google Scholar
Calpe-Berdiel L, Escola-Gil JC, Ribas V, Navarro-Sastre A, Garces-Garces J, Blanco-Vaca F. Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Atherosclerosis. 2005;181:75–85.
Article
CAS
PubMed
Google Scholar
Weingartner O, Lutjohann D, Ji S, Weisshoff N, List F, Sudhop T, von Bergmann K, Gertz K, Konig J, Schafers HJ, et al. Vascular effects of diet supplementation with plant sterols. J Am Coll Cardiol. 2008;51:1553–61.
Article
PubMed
Google Scholar
Alkemade FE, van Vliet P, Henneman P, van Dijk KW, Hierck BP, van Munsteren JC, Scheerman JA, Goeman JJ, Havekes LM, Gittenberger-de Groot AC, et al. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am J Pathol. 2010;176:542–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goharkhay N, Sbrana E, Gamble PK, Tamayo EH, Betancourt A, Villarreal K, Hankins GD, Saade GR, Longo M. Characterization of a murine model of fetal programming of atherosclerosis. Am J Obstet Gynecol. 2007;197(416):e411–5.
Google Scholar
Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26:847–70.
Article
PubMed
Google Scholar
Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54:1214–23.
Article
CAS
PubMed
Google Scholar
Morgan K, Uyuni A, Nandgiri G, Mao L, Castaneda L, Kathirvel E, French SW, Morgan TR. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2008;20:843–54.
Article
CAS
PubMed
Google Scholar
Bumpus NN, Johnson EF. 5-Aminoimidazole-4-carboxyamide-ribonucleoside (AICAR)-stimulated hepatic expression of Cyp4a10, Cyp4a14, Cyp4a31, and other peroxisome proliferator-activated receptor alpha-responsive mouse genes is AICAR 5′-monophosphate-dependent and AMP-activated protein kinase-independent. J Pharmacol Exp Ther. 2011;339:886–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feingold KR, Wang Y, Moser A, Shigenaga JK, Grunfeld C. LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J Lipid Res. 2008;49:2179–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sim WC, Park S, Lee KY, Je YT, Yin HQ, Choi YJ, Sung SH, Park SJ, Park HJ, Shin KJ, Lee BH. LXR-alpha antagonist meso-dihydroguaiaretic acid attenuates high-fat diet-induced nonalcoholic fatty liver. Biochem Pharmacol. 2014;90:414–24.
Article
CAS
PubMed
Google Scholar
Zhou Y, Zhang X, Chen L, Wu J, Dang H, Wei M, Fan Y, Zhang Y, Zhu Y, Wang N, et al. Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am J Physiol Renal Physiol. 2008;295:F662–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004;5:253–61.
Article
CAS
PubMed
Google Scholar
Zhang G, Li Q, Wang L, Chen Y, Wang L, Zhang W. Interleukin-1beta enhances the intracellular accumulation of cholesterol by up-regulating the expression of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase in podocytes. Mol Cell Biochem. 2011;346:197–204.
Article
CAS
PubMed
Google Scholar
Vrins CL, Out R, van Santbrink P, van der Zee A, Mahmoudi T, Groenendijk M, Havekes LM, van Berkel TJ, van Dijk WK, Biessen EA. Znf202 affects high density lipoprotein cholesterol levels and promotes hepatosteatosis in hyperlipidemic mice. PLoS ONE. 2013;8:e57492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M, Dong B, Cao A, Li H, Liu J. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters. Atherosclerosis. 2012;224:401–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005;280:12710–20.
Article
CAS
PubMed
Google Scholar
Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA. The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci USA. 2008;105:3891–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sekar R, Chow BK. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption. FASEB J. 2014;28:3494–505.
Article
CAS
PubMed
Google Scholar
Huang J, Tabbi-Anneni I, Gunda V, Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1211–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratliff EP, Gutierrez A, Davis RA. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res. 2006;47:1513–20.
Article
CAS
PubMed
Google Scholar
Kuehl RO. Design of experiments: statistical principles of research design analysis. 2nd ed. Three Lakes: Brooks/Cole Publishing Company; 2000.
Google Scholar
McConihay JA, Horn PS, Woollett LA. Effect of maternal hypercholesterolemia on fetal sterol metabolism in the Golden Syrian hamster. J Lipid Res. 2001;42:1111–9.
CAS
PubMed
Google Scholar
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plosch T. The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013;88:24.
Article
PubMed
Google Scholar
Mellies MJ, Ishikawa TT, Gartside PS, Burton K, MacGee J, Allen K, Steiner PM, Brady D, Glueck CJ. Effects of varying maternal dietary fatty acids in lactating women and their infants. Am J Clin Nutr. 1979;32:299–303.
CAS
PubMed
Google Scholar
Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279:33586–92.
Article
CAS
PubMed
Google Scholar
Yoshida S, Wada Y. Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J Lipid Res. 2005;46:2168–74.
Article
CAS
PubMed
Google Scholar
Chen Q, Gruber H, Pakenham C, Ratnayake WM, Scoggan KA. Dietary phytosterols and phytostanols alter the expression of sterol-regulatory genes in SHRSP and WKY inbred rats. Ann Nutr Metab. 2009;55:341–50.
Article
CAS
PubMed
Google Scholar
Feng D, Sun JG, Sun RB, Ou-Yang BC, Yao L, Aa JY, Zhou F, Zhang JW, Zhang J, Wang GJ. Isoflavones and phytosterols contained in Xuezhikang capsules modulate cholesterol homeostasis in high-fat diet mice. Acta Pharmacol Sin. 2015;36:1462–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scoggan KA, Gruber H, Chen Q, Plouffe LJ, Lefebvre JM, Wang B, Bertinato J, L’Abbe MR, Hayward S, Ratnayake WM. Increased incorporation of dietary plant sterols and cholesterol correlates with decreased expression of hepatic and intestinal Abcg5 and Abcg8 in diabetic BB rats. J Nutr Biochem. 2009;20:177–86.
Article
CAS
PubMed
Google Scholar
De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res. 2012;56:1058–72.
Article
PubMed
Google Scholar
Batta AK, Xu G, Bollineni JS, Shefer S, Salen G. Effect of high plant sterol-enriched diet and cholesterol absorption inhibitor, SCH 58235, on plant sterol absorption and plasma concentrations in hypercholesterolemic wild-type Kyoto rats. Metabolism. 2005;54:38–48.
Article
CAS
PubMed
Google Scholar
Rideout TC, Carrier B, Wen S, Raslawsky A, Browne RW, Harding SV. Complementary cholesterol-lowering response of a phytosterol/alpha-lipoic acid combination in obese zucker rats. J Diet Suppl. 2016;13(3):283–99.
Article
CAS
PubMed
Google Scholar
Harding SV, Rideout TC, Jones PJ. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols. J Nutr. 2010;140:1249–54.
Article
CAS
PubMed
Google Scholar
Plat J, Mensink RP. Effects of plant stanol esters on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase mRNA expression in mononuclear blood cells of healthy men and women. FASEB J. 2002;16:258–60.
Article
CAS
PubMed
Google Scholar
Moghadasian MH, Nguyen LB, Shefer S, Salen G, Batta AK, Frohlich JJ. Hepatic cholesterol and bile acid synthesis, low-density lipoprotein receptor function, and plasma and fecal sterol levels in mice: effects of apolipoprotein E deficiency and probucol or phytosterol treatment. Metabolism. 2001;50:708–14.
Article
CAS
PubMed
Google Scholar
Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell. 2005;120:261–73.
Article
CAS
PubMed
Google Scholar
Rideout TC, Ramprasath V, Griffin JD, Browne RW, Harding SV, Jones PJ. Phytosterols protect against diet-induced hypertriglyceridemia in Syrian golden hamsters. Lipids Health Dis. 2014;13:5.
Article
PubMed
PubMed Central
Google Scholar
Schonewille M, Brufau G, Shiri-Sverdlov R, Groen AK, Plat J. Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. J Lipid Res. 2014;55:2554–61.
Article
CAS
PubMed
PubMed Central
Google Scholar