Barreto GE, Gonzalez J, Torres Y, Morales L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res. 2011;71(2):107–13.
Article
PubMed
Google Scholar
Bechade C, Cantaut-Belarif Y, Bessis A. Microglial control of neuronal activity. Front Cell Neurosci. 2013;7:32.
Article
PubMed
PubMed Central
Google Scholar
Bessis A, Bechade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia. 2007;55(3):233–8.
Article
PubMed
Google Scholar
Dalmau I, Finsen B, Tonder N, Zimmer J, Gonzalez B, Castellano B. Development of microglia in the prenatal rat hippocampus. J Comp Neurol. 1997;377(1):70–84.
Article
CAS
PubMed
Google Scholar
Dalmau I, Finsen B, Zimmer J, Gonzalez B, Castellano B. Development of microglia in the postnatal rat hippocampus. Hippocampus. 1998;8(5):458–74.
Article
CAS
PubMed
Google Scholar
Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol. 2003;458(2):144–57.
Article
PubMed
Google Scholar
Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16(8):2508–21.
Article
CAS
PubMed
Google Scholar
Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40(2):140–55.
Article
PubMed
Google Scholar
Barger SW, Basile AS. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem. 2001;76(3):846–54.
Article
CAS
PubMed
Google Scholar
Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149(8):2736–41.
CAS
PubMed
Google Scholar
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005;25(10):2566–75.
Article
CAS
PubMed
Google Scholar
Piani D, Frei K, Do KQ, Cuenod M, Fontana A. Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett. 1991;133(2):159–62.
Article
CAS
PubMed
Google Scholar
An SF, Groves M, Gray F, Scaravilli F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol. 1999;58(11):1156–62.
Article
CAS
PubMed
Google Scholar
Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F, Rosenberg ES, Williams KC, Grinspoon S. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204(8):1227–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Debaisieux S, Rayne F, Yezid H, Beaumelle B. The ins and outs of HIV-1 Tat. Traffic. 2012;13(3):355–63.
Article
CAS
PubMed
Google Scholar
Rayne F, Debaisieux S, Bonhoure A, Beaumelle B. HIV-1 Tat is unconventionally secreted through the plasma membrane. Cell Biol Int. 2010;34(4):409–13.
Article
CAS
PubMed
Google Scholar
Rayne F, Debaisieux S, Tu A, Chopard C, Tryoen-Toth P, Beaumelle B. Detecting HIV-1 Tat in cell culture supernatants by ELISA or Western Blot. Methods Mol Biol. 2016;1354:329–42.
Article
CAS
PubMed
Google Scholar
Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B. HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell. 2004;15(5):2347–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carey AN, Liu X, Mintzopoulos D, Paris JJ, Muschamp JW, McLaughlin JP, Kaufman MJ. Conditional Tat protein expression in the GT-tg bigenic mouse brain induces gray matter density reductions. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:49–54.
Article
CAS
PubMed
Google Scholar
Carey AN, Sypek EI, Singh HD, Kaufman MJ, McLaughlin JP. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav Brain Res. 2012;229(1):48–56.
Article
CAS
PubMed
Google Scholar
Pettit DL, Augustine GJ. Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons. J Neurophysiol. 2000;84(1):28–38.
Article
CAS
PubMed
Google Scholar
Lisman JE. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 1997;20(1):38–43.
Article
CAS
PubMed
Google Scholar
Williams SR, Stuart GJ. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol. 1999;521(Pt 2):467–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Epsztein J, Brecht M, Lee AK. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron. 2011;70(1):109–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golding NL, Staff NP, Spruston N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 2002;418(6895):326–31.
Article
CAS
PubMed
Google Scholar
Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol. 2006;16(2):179–90.
Article
CAS
PubMed
Google Scholar
Castelo JM, Sherman SJ, Courtney MG, Melrose RJ, Stern CE. Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology. 2006;66(11):1688–95.
Article
CAS
PubMed
Google Scholar
Winocur G, Moscovitch M, Rosenbaum RS, Sekeres M. A study of remote spatial memory in aged rats. Neurobiol Aging. 2010;31(1):143–50.
Article
PubMed
Google Scholar
Behnisch T, Francesconi W, Sanna PP. HIV secreted protein Tat prevents long-term potentiation in the hippocampal CA1 region. Brain Res. 2004;1012(1–2):187–9.
Article
CAS
PubMed
Google Scholar
Silver RA. Neuronal arithmetic. Nat Rev Neurosci. 2010;11(7):474–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Disterhoft JF, Oh MM. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci. 2006;29(10):587–99.
Article
CAS
PubMed
Google Scholar
Disterhoft JF, Oh MM. Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J physiol Paris. 2006;99(2–3):180–92.
Article
CAS
PubMed
Google Scholar
Disterhoft JF, Oh MM. Alterations in intrinsic neuronal excitability during normal aging. Aging Cell. 2007;6(3):327–36.
Article
CAS
PubMed
Google Scholar
Kim JR, Ahn SY, Jeong SW, Kim LS, Park JS, Chung SH, Oh MK. Cortical auditory evoked potential in aging: effects of stimulus intensity and noise. Otol Neurotol. 2012;33(7):1105–12.
Article
PubMed
Google Scholar
Oh MM, Disterhoft JF. Cellular mechanisms for altered learning in aging. Future neurology. 2010;5(1):147–55.
Article
PubMed
PubMed Central
Google Scholar
Oh MM, Oliveira FA, Disterhoft JF. Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci. 2010;2:2.
PubMed
PubMed Central
Google Scholar
Szucs A, Berton F, Sanna PP, Francesconi W. Excitability of jcBNST neurons is reduced in alcohol-dependent animals during protracted alcohol withdrawal. PLoS ONE. 2012;7(8):e42313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tryoen-Toth P, Chasserot-Golaz S, Tu A, Gherib P, Bader MF, Beaumelle B, Vitale N. HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J Cell Sci. 2013;126(Pt 2):454–63.
Article
CAS
PubMed
Google Scholar
Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Proteomics. 2017;17(6):1600236.
Article
Google Scholar
Gurwitz KT, Burman RJ, Murugan BD, Garnett S, Ganief T, Soares NC, Raimondo JV, Blackburn JM. Time-dependent, HIV-Tat-induced perturbation of human neurons in vitro: towards a model for the molecular pathology of HIV-associated neurocognitive disorders. Front Mol Neurosci. 2017;10:163.
Article
PubMed
PubMed Central
Google Scholar
Falzone TL, Stokin GB, Lillo C, Rodrigues EM, Westerman EL, Williams DS, Goldstein LS. Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects. J Neurosci. 2009;29(18):5758–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogh KA, Wydeven N, Wickman K, Thayer SA. HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca2
+ concentration via activation of Src kinase and nitric oxide signaling pathways. J Neurochem. 2014;130(5):642–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi X, Amet T, Byrd D, Chang KH, Shah K, Hu N, Grantham A, Hu S, Duan J, Tao F, et al. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain. PLoS ONE. 2011;6(9):e24412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogh KA, Green MV, Thayer SA. HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr HIV Res. 2015;12(6):406–14.
Article
PubMed Central
Google Scholar
Krogh KA, Green MV, Thayer SA. HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr HIV Res. 2014;12(6):406–14.
Article
CAS
PubMed
Google Scholar
Cheng J, Nath A, Knudsen B, Hochman S, Geiger JD, Ma M, Magnuson DS. Neuronal excitatory properties of human immunodeficiency virus type 1 Tat protein. Neuroscience. 1998;82(1):97–106.
Article
CAS
PubMed
Google Scholar
Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM, Nath A. Human immunodeficiency virus type 1 tat activates non-N-methyl-d-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol. 1995;37(3):373–80.
Article
CAS
PubMed
Google Scholar
Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD. Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol. 1996;70(3):1475–80.
CAS
PubMed
PubMed Central
Google Scholar
Brailoiu GC, Brailoiu E, Chang JK, Dun NJ. Excitatory effects of human immunodeficiency virus 1 Tat on cultured rat cerebral cortical neurons. Neuroscience. 2008;151(3):701–10.
Article
CAS
PubMed
Google Scholar
Napier TC, Chen L, Kashanchi F, Hu XT. Repeated cocaine treatment enhances HIV-1 Tat-induced cortical excitability via over-activation of l-type calcium channels. J Neuroimmune Pharmacol. 2014;9(3):354–68.
Article
PubMed
PubMed Central
Google Scholar
Giese KP, Storm JF, Reuter D, Fedorov NB, Shao LR, Leicher T, Pongs O, Silva AJ. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learn Mem. 1998;5(4–5):257–73.
CAS
PubMed
PubMed Central
Google Scholar
Solntseva EI, Bukanova IuV, Skrebitskii VG. Memory and potassium channels. Usp Fiziol Nauk. 2003;34(4):16–25.
CAS
PubMed
Google Scholar
Gelman BB, Soukup VM, Schuenke KW, Keherly MJ, Holzer C 3rd, Richey FJ, Lahart CJ. Acquired neuronal channelopathies in HIV-associated dementia. J Neuroimmunol. 2004;157(1–2):111–9.
Article
CAS
PubMed
Google Scholar