Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R, et al. From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev. 2013;37(2):138–51.
Article
CAS
Google Scholar
Adkins JE, Boyer EW, McCurdy CR. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr Top Med Chem. 2011;11(9):1165–75.
Article
CAS
Google Scholar
Takayama H, Kitajima M, Matsumoto K, Horie S. Indole alkaloid derivatives having opioid receptor agonistic effect, and therapeutic compositions and methods relating to same. U.S. Patent No. 8,648,090; 2014.
Pasternak G, Majumdar S, Karimov R, Varadi A. Mitragynine analogs and uses thereof. U.S. Patent Application No. 15/570,308; 2018.
Prozialeck WC. Update on the pharmacology and legal status of Kratom. J Am Osteopathic Assoc. 2016;116(12):802–9.
Article
Google Scholar
Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet. 2007;369(9566):1047–53.
Article
Google Scholar
Takayama H, Maeda M, Ohbayashi S, Kitajima M, Sakai S, Aimi N. The first total synthesis of (−)-mitragynine, an analgesic indole alkaloid in mitragyna speciosa. Tetrahedron Lett. 1995;36(51):9337–40.
Article
CAS
Google Scholar
Ma J, Yin W, Zhou H, Liao X, Cook JM. General approach to the total synthesis of 9-methoxy-substituted indole alkaloids: synthesis of mitragynine, as well as 9-methoxygeissoschizol and 9-methoxy-Nb-methylgeissoschizol. J Org Chem. 2009;74(1):264–73.
Article
CAS
Google Scholar
Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, et al. Antinociceptive effect of 7-hydroxymitragynine in mice: discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004;74(17):2143–55.
Article
CAS
Google Scholar
de Moraes NV, Moretti RAC, Furr EB, McCurdy CR, Lanchote VL. Determination of mitragynine in rat plasma by LC–MS/MS: application to pharmacokinetics. J Chromatogr B. 2009;877(24):2593–7.
Article
Google Scholar
Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH. Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom. 2009;44(8):1249–61.
Article
CAS
Google Scholar
Vuppala PK, Jamalapuram S, Furr EB, McCurdy CR, Avery BA. Development and validation of a UPLC-MS/MS method for the determination of 7-hydroxymitragynine, a μ-opioid agonist, in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2013;27(12):1726–32.
Article
CAS
Google Scholar
Liu H, McCurdy CR, Doerksen RJ. Computational study on the conformations of mitragynine and mitragynaline. J Mol Struct (Thoechem). 2010;945(1):57–63.
Article
CAS
Google Scholar
Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull. 2004;52(8):916–28.
Article
CAS
Google Scholar
Takayama H, Ishikawa H, Kurihara M, Kitajima M, Sakai S, Aimi N, et al. Structure revision of mitragynaline, an indole alkaloid in Mitragyna speciosa. Tetrahedron Lett. 2001;42(9):1741–3.
Article
CAS
Google Scholar
Carvalho P, Furr EB III, McCurdy C. (E)-Methyl 2-[(2S,3S,12bR)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyacrylate ethanol solvate. Acta Crystallogr E. 2009;65(6):o1441–2.
Article
CAS
Google Scholar
Zacharias DE, Rosenstein RD, Jeffrey GA. The structure of mitragynine hydroiodide. Acta Crystallogr A. 1965;18(6):1039–43.
Article
CAS
Google Scholar
Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys. 2015;113(2):184–215.
Article
CAS
Google Scholar
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–96.
Article
CAS
Google Scholar
Wolfram Research Inc. Mathematica. Champaign: Wolfram Research, Inc.; 2019.
Google Scholar
Limpanuparb T, Roongruangsree P, Areekul C. A DFT investigation of the blue bottle experiment: E
∘ half-cell analysis of autoxidation catalysed by redox indicators. R Soc Open Sci. 2017;4:170708.
Article
Google Scholar
Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–9.
Article
CAS
Google Scholar
Kamble SH, Sharma A, King TI, León F, McCurdy CR, Avery BA. Metabolite profiling and identification of enzymes responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica. https://doi.org/10.1080/00498254.2018.1552819.
Avery BA, Boddu SP, Sharma A, Furr EB, Leon F, Cutler SJ, et al. Comparative pharmacokinetics of mitragynine after oral administration of Mitragyna speciosa (Kratom) leaf extracts in rats. Planta Med. 2019;85(04):340–6.
Article
CAS
Google Scholar
Kruegel AC, Uprety R, Grinnell SG, Langreck C, Pekarskaya EA, Rouzic VL et al.7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci. 2019;5(6):992–1001.
Google Scholar