Brose K, Tessier-Lavigne M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol. 2000;10:95–102.
Article
CAS
PubMed
Google Scholar
Blockus H, Chedotal A. Slit-Robo Signal Dev. 2016;143:3037–44.
CAS
Google Scholar
Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92:205–15.
Article
CAS
PubMed
Google Scholar
Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96:795–806.
Article
CAS
PubMed
Google Scholar
Sundaresan V, Roberts I, Bateman A, Bankier A, Sheppard M, Hobbs C, et al. The DUTT1 gene, a novel NCAM family member is expressed in developing murine neural tissues and has an unusually broad pattern of expression. Mol Cell Neurosci. 1998;11:29–35.
Article
CAS
PubMed
Google Scholar
Yuan SS, Cox LA, Dasika GK, Lee EY. Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol. 1999;207:62–75.
Article
CAS
PubMed
Google Scholar
Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics. 2002;79:547–52.
Article
CAS
PubMed
Google Scholar
Nguyen-Ba-Charvet KT, Chedotal A. Role of Slit proteins in the vertebrate brain. J Physiol Paris. 2002;96:91–8.
Article
CAS
PubMed
Google Scholar
Chedotal A. Slits and their receptors. Adv Exp Med Biol. 2007;621:65–80.
Article
PubMed
Google Scholar
Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron. 2002;33:219–32.
Article
CAS
PubMed
Google Scholar
Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron. 2002;33:233–48.
Article
CAS
PubMed
Google Scholar
Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development. 2006;133:2243–52.
Article
CAS
PubMed
Google Scholar
Lopez-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, et al. Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci. 2007;27:3395–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koohini Z, Koohini Z, Teimourian S. Slit/Robo signaling pathway in cancer; a new stand point for cancer treatment. Pathol Oncol Res. 2019;25(4):1285–93.
Article
CAS
PubMed
Google Scholar
Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron. 2012;76:338–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amaral DG, Insausti R, Cowan WM. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurol. 1987;264:326–55.
Article
CAS
PubMed
Google Scholar
Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG, Nakajima K, et al. Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb Cortex. 2013;23:1495–508.
Article
PubMed
Google Scholar
Sasaki T, Komatsu Y, Watakabe A, Sawada K, Yamamori T. Prefrontal-enriched SLIT1 expression in Old World monkey cortex established during the postnatal development. Cereb Cortex. 2010;20:2496–510.
Article
PubMed
PubMed Central
Google Scholar
Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Retinol-binding protein gene is highly expressed in higher-order association areas of the primate neocortex. Cereb Cortex. 2005;15:96–108.
Article
PubMed
Google Scholar
Takaji M, Komatsu Y, Watakabe A, Hashikawa T, Yamamori T. Paraneoplastic antigen-like 5 gene (PNMA5) is preferentially expressed in the association areas in a primate specific manner. Cereb Cortex. 2009;19:2865–79.
Article
PubMed
PubMed Central
Google Scholar
Yamamori T. Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol. 2011;94:201–22.
Article
CAS
PubMed
Google Scholar
Hata K, Mizukami H, Sadakane O, Watakabe A, Ohtsuka M, Takaji M, et al. DNA methylation and methyl-binding proteins control differential gene expression in distinct cortical areas of macaque monkey. J Neurosci. 2013;33:19704–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang F, Hatanaka Y, Saito H, Yamamori T, Hashikawa T. Differential expression of gamma-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J Comp Neurol. 2000;416:475–95.
Article
CAS
PubMed
Google Scholar
Hayashi M, Mistunaga F, Ohira K, Shimizu K. Changes in BDNF-immunoreactive structures in the hippocampal formation of the aged macaque monkey. Brain Res. 2001;918:191–6.
Article
CAS
PubMed
Google Scholar
Woodhams PL. Laminar and region-specific cell surface markers in the entorhinal cortex and hippocampus. Hippocampus. 1993;3:183–9.
Article
PubMed
Google Scholar
Skutella T, Nitsch R. New molecules for hippocampal development. Trends Neurosci. 2001;24:107–13.
Article
CAS
PubMed
Google Scholar
Suzuki WA, Amaral DG. Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience. 2003;120:893–906.
Article
CAS
PubMed
Google Scholar
Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S. Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front Syst Neurosci. 2017;11:46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–6.
Article
CAS
PubMed
Google Scholar
Moser EI, Moser MB, McNaughton BL. Spatial representation in the hippocampal formation: a history. Nat Neurosci. 2017;20:1448–64.
Article
CAS
PubMed
Google Scholar
Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.
Article
PubMed
Google Scholar
Hunt MJ, Kopell NJ, Traub RD, Whittington MA. Aberrant network activity in Schizophrenia. Trends Neurosci. 2017;40:371–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, et al. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia. 2003;42:130–8.
Article
PubMed
Google Scholar
Murai KK, Pasquale EB. Can Eph receptors stimulate the mind? Neuron. 2002;33:159–62.
Article
CAS
PubMed
Google Scholar
Nestler EJ. Genes and addiction. Nat Genet. 2000;26:277–81.
Article
CAS
PubMed
Google Scholar
Bahi A, Dreyer JL. Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci. 2005;28:275–91.
Article
CAS
PubMed
Google Scholar
Lin L, Lesnick TG, Maraganore DM, Isacson O. Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci. 2009;32:142–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen K, Cowan CW. Guidance molecules in synapse formation and plasticity. Cold Spring Harb Perspect Biol. 2010;2:a001842.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, et al. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. ELife. 2014;3:4390.
Article
CAS
Google Scholar
Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron. 2005;45:279–91.
Article
CAS
PubMed
Google Scholar
Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron. 2006;49:877–87.
Article
CAS
PubMed
Google Scholar
Sadakane O, Watakabe A, Ohtsuka M, Takaji M, Sasaki T, Kasai M, et al. In vivo two-photon imaging of dendritic spines in marmoset neocortex. ENeuro. 2015. https://doi.org/10.1523/ENEURO.0019-15.2015.
Article
PubMed
PubMed Central
Google Scholar