Bourke A. The biology of the naked mole-rat. Trends Ecol Evol. 1991;6:171–2. https://doi.org/10.1016/0169-5347(91)90064-5.
Article
Google Scholar
Schuhmacher L-N, Husson Z, Smith ESJ. The naked mole-rat as an animal model in biomedical research: current perspectives. Open Access Anim Physiol. 2015;7:137–48. https://doi.org/10.2147/OAAP.S50376.
Article
Google Scholar
Jarvis JUM. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science. 1981;212:571–3. https://doi.org/10.1126/science.7209555.
Article
PubMed
CAS
Google Scholar
Buffenstein R. The naked mole-rat: a new long-living model for human aging research. J Gerontol Ser A Biol Sci Med Sci. 2005;60:1369–77. https://doi.org/10.1093/gerona/60.11.1369.
Article
Google Scholar
Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 2011;52:41–53. https://doi.org/10.1093/ilar.52.1.41.
Article
PubMed
CAS
Google Scholar
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, et al. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep. 2014. https://doi.org/10.1016/j.celrep.2014.07.030.
Article
PubMed
PubMed Central
Google Scholar
Daly JTM, Buffenstein R. Skin morphology and its role in thermoregulation in mole-rats, Heterocephalus glaber and Cryptomys hottentotus. J Anat. 1998;193:495–502.
Article
Google Scholar
Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44:1341–8.
Article
CAS
Google Scholar
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20:1475. https://doi.org/10.3390/ijms20061475.
Article
PubMed Central
CAS
Google Scholar
Parisi R, Symmons DPM, Griffiths CEM, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–85. https://doi.org/10.1038/jid.2012.339.
Article
PubMed
CAS
Google Scholar
Enamandram M, Kimball AB. Psoriasis epidemiology: the interplay of genes and the environment. J Invest Dermatol. 2013;133:287–9. https://doi.org/10.1038/jid.2012.434.
Article
PubMed
CAS
Google Scholar
Korman NJ. Management of psoriasis as a systemic disease: what is the evidence? Br J Dermatol. 2019;182:840. https://doi.org/10.1111/bjd.18245.
Article
PubMed
PubMed Central
Google Scholar
Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH. Natural modulators of endosomal Toll-Like receptor-mediated psoriatic skin inflammation. J Immunol Res 2017;2017. https://doi.org/10.1155/2017/7807313.
Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician. 2017;63:278–85.
PubMed
PubMed Central
Google Scholar
Sundarrajan S, Arumugam M. Comorbidities of psoriasis—exploring the links by network approach. PLoS ONE. 2016;11:0149175. https://doi.org/10.1371/journal.pone.0149175.
Article
CAS
Google Scholar
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55. https://doi.org/10.1146/annurev-immunol-032713-120225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayala-Fontanez N, Soler D, McCormick T. Current knowledge on psoriasis and autoimmune diseases. Psoriasis Targets Ther. 2016;6:7–32. https://doi.org/10.2147/ptt.s64950.
Article
CAS
Google Scholar
Zhao J, Di T, Wang Y, Wang Y, Liu X, Liang D, et al. Paeoniflorin inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response and cytokine secretion. Eur J Pharmacol. 2016. https://doi.org/10.1016/j.ejphar.2015.12.040.
Article
PubMed
Google Scholar
Arits AHMM, Mosterd K, Essers BA, Spoorenberg E, Sommer A, De Rooij MJM, et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. Lancet Oncol. 2013;14:647–54. https://doi.org/10.1016/S1470-2045(13)70143-8.
Article
PubMed
CAS
Google Scholar
Arits AHMM, Spoorenberg E, Mosterd K, Nelemans P, Kelleners-Smeets NWJ, Essers BAB. Cost-effectiveness of topical imiquimod and fluorouracil vs. photodynamic therapy for treatment of superficial basal-cell carcinoma. Br J Dermatol. 2014;171:1501–7. https://doi.org/10.1111/bjd.13066.
Article
PubMed
CAS
Google Scholar
Paoli J, Gyllencreutz JD, Fougelberg J, Backman EJ, Modin M, Polesie S, et al. Nonsurgical options for the treatment of basal cell carcinoma. Dermatol Pract Concept. 2019;9:75–81. https://doi.org/10.5826/dpc.0902a01.
Article
PubMed
PubMed Central
Google Scholar
Edwards L, Ferenczy A, Eron L, Baker D, Owens ML, Fox TL, et al. Self-administered topical 5% imiquimod cream for external anogenital warts. HPV Study Group. Human PapillomaVirus. Arch Dermatol. 1998;134:25–30.
Article
CAS
Google Scholar
Hengge UR, Esser S, Schultewolter T, Behrendt C, Meyer T, Stockfleth E, et al. Self-administered topical 5% imiquimod for the treatment of common warts and molluscum contagiosum. Br J Dermatol. 2000;143:1026–31. https://doi.org/10.1046/j.1365-2133.2000.03777.x.
Article
PubMed
CAS
Google Scholar
Gollnick H, Dirschka T, Ostendorf R, Kerl H, Kunstfeld R. Long-term clinical outcomes of imiquimod 5% cream versus diclofenac 3% gel for actinic keratosis on the face or scalp: a pooled analysis of two randomized controlled trials. J Eur Acad Dermatology Venereol. 2020;34:82–9. https://doi.org/10.1111/jdv.15868.
Article
CAS
Google Scholar
Altalhab S. The effectiveness of imiquimod 5% cream as an anti-wrinkle treatment: a pilot study. J Cosmet Dermatol. 2019;18:1729–32. https://doi.org/10.1111/jocd.12939.
Article
PubMed
Google Scholar
Hanna E, Abadi R, Abbas O. Imiquimod in dermatology: an overview. Int J Dermatol. 2016;55:831–44. https://doi.org/10.1111/ijd.13235.
Article
PubMed
CAS
Google Scholar
Wu JK, Siller G, Strutton G. Psoriasis induced by topical imiquimod. Australas J Dermatol. 2004;45:47–50.
Article
Google Scholar
Fanti PA, Dika E, Vaccari S, Miscial C, Varotti C. Generalized psoriasis induced by topical treatment of actinic keratosis with imiquimod. Int J Dermatol. 2006;45:1464–5. https://doi.org/10.1111/j.1365-4632.2006.02980.x.
Article
PubMed
CAS
Google Scholar
Varma SR, Sivaprakasam TO, Mishra A, Prabhu S, Rafiq M, Rangesh P. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin. Eur J Pharmacol. 2017;813:33–41. https://doi.org/10.1016/j.ejphar.2017.07.040.
Article
PubMed
CAS
Google Scholar
Flutter B, Nestle FO. TLRs to cytokines: Mechanistic insights from the imiquimod mouse model of psoriasis. Eur J Immunol. 2013;43:3138–46. https://doi.org/10.1002/eji.201343801.
Article
PubMed
CAS
Google Scholar
van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182:5836–45. https://doi.org/10.4049/jimmunol.0802999.
Article
PubMed
CAS
Google Scholar
Luo DQ, Wu HH, Zhao YK, Liu JH, Wang F. Different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models. Exp Biol Med. 2016;241:1733–8. https://doi.org/10.1177/1535370216647183.
Article
CAS
Google Scholar
Dou R, Liu Z, Yuan X, Xiangfei D, Bai R, Bi Z, et al. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines. PLoS ONE. 2017;12:e0176823. https://doi.org/10.1371/journal.pone.0176823.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wohn CT, Pantelyushin S, Ober-Blöbaum JL, Clausen BE. Aldara-induced psoriasis-like skin inflammation: isolation and characterization of cutaneous dendritic cells and innate lymphocytes. Methods Mol Biol. 2014;1193:171–85. https://doi.org/10.1007/978-1-4939-1212-4_16.
Article
PubMed
CAS
Google Scholar
Ilacqua AN, Kirby AM, Pamenter ME. Behavioural responses of naked mole rats to acute hypoxia and anoxia. Biol Lett. 2017;13:20170545. https://doi.org/10.1098/rsbl.2017.0545.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park TJ, Lu Y, Jüttner R, Smith ESJ, Hu J, Brand A, et al. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol. 2008;6:e13. https://doi.org/10.1371/journal.pbio.0060013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith SJE, Blass GR, Lewin GR, Park TJ. Absence of histamine-induced itch in the African naked mole-rat and “Rescue” by substance P. Mol Pain. 2010;6:29. https://doi.org/10.1186/1744-8069-6-29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell. 2010;9:626–35. https://doi.org/10.1111/j.1474-9726.2010.00588.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Poc Nat’l Acad Sci. 2009;106:19352–7.
Article
Google Scholar
Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–9. https://doi.org/10.1038/nature12234.
Article
PubMed
PubMed Central
CAS
Google Scholar
Petruseva IO, Evdokimov AN, Lavrik OI. Genome stability maintenance in naked mole-rat. Acta Naturae. 2017;9:31–41.
Article
CAS
Google Scholar
Mead R. The design of experiments : statistical principles for practical applications. Cambridge: Cambridge University Press; 1988.
Google Scholar
El Malki K, Karbach SH, Huppert J, Zayoud M, Reißig S, Schüler R, et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J Invest Dermatol. 2013. https://doi.org/10.1038/jid.2012.318.
Article
PubMed
Google Scholar
Li ZJ, Sohn KC, Choi DK, Shi G, Hong D, Lee HE, et al. Roles of TLR7 in activation of NF-κB signaling of keratinocytes by imiquimod. PLoS ONE. 2013;8:e77159. https://doi.org/10.1371/journal.pone.0077159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, et al. Aldara activates TLR7-independent immune defence. Nat Commun. 2013;4:1560. https://doi.org/10.1038/ncomms2566.
Article
PubMed
CAS
Google Scholar
Hilton HG, Rubinstein ND, Janki P, Ireland AT, Bernstein N, Fong NL, et al. Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity. PLOS Biol. 2019;17:e3000528. https://doi.org/10.1371/journal.pbio.3000528.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garzorz-Stark N, Lauffer F, Krause L, Thomas J, Atenhan A, Franz R, et al. Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects. J Allergy Clin Immunol. 2018;141(1320–1333):e11. https://doi.org/10.1016/j.jaci.2017.07.045.
Article
CAS
Google Scholar
Deckers J, Hammad H, Hoste E. Langerhans cells: Sensing the environment in health and disease. Front Immunol. 2018;9:93. https://doi.org/10.3389/fimmu.2018.00093.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4:221–33. https://doi.org/10.1158/1541-7786.MCR-05-0261.
Article
PubMed
CAS
Google Scholar
Sui X, Lei L, Chen L, Xie T, Li X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget. 2017;8:93279–94. https://doi.org/10.18632/oncotarget.21565.
Article
PubMed
PubMed Central
Google Scholar
Hamza M, Tohid H, Maibach H. Shaving effects on percutaneous penetration: clinical implications. Cutan Ocul Toxicol. 2015;34:335–43. https://doi.org/10.3109/15569527.2014.966109.
Article
PubMed
Google Scholar
Pany A, Klang V, Brunner M, Ruthofer J, Schwarz E, Valenta C. Effect of physical and chemical hair removal methods on skin barrier function in vitro: consequences for a hydrophilic model permeant. Skin Pharmacol Physiol. 2019;32:8–21. https://doi.org/10.1159/000493168.
Article
PubMed
CAS
Google Scholar
Kim H-R, Lee A, Choi E-J, Hong M-P, Kie J-H, Lim W, et al. Reactive oxygen species prevent imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. PLoS ONE. 2014;9:e91146. https://doi.org/10.1371/journal.pone.0091146.
Article
PubMed
PubMed Central
Google Scholar
Andziak B, O’Connor TP, Qi W, Dewaal EM, Pierce A, Chaudhuri AR, et al. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5:463–71. https://doi.org/10.1111/j.1474-9726.2006.00237.x.
Article
PubMed
CAS
Google Scholar
Saldmann F, Viltard M, Leroy C, Friedlander G. The naked mole rat: a unique example of positive oxidative. Stress. 2019. https://doi.org/10.1155/2019/4502819.
Article
Google Scholar
Andziak B, Buffenstein R. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell. 2006;5:525–32. https://doi.org/10.1111/j.1474-9726.2006.00246.x.
Article
PubMed
CAS
Google Scholar