Clutton-Brock J. Domesticated animals: from early times, Heinemann in assoc. with British Museum. London: Natural history; 1981.
Google Scholar
Wang GD, Zhai W, Yang HC, Wang L, Zhong L, Liu YH, et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 2016;26:21–33.
Article
Google Scholar
Clutton-Brock J. Origins of the dog: domestication and early history. In: Serpell J, editor. The domestic dog: its evolution, behaviour, and interactions with people. New York: Cambridge University Press; 1995. p. 7–20.
Google Scholar
Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, et al. Multiple and ancient origins of the domestic dog. Science. 1997;276:1687–9.
Article
Google Scholar
Wayne RK. Molecular evolution of the dog family. Trends Genet. 1993;9:218–24.
Article
CAS
Google Scholar
Colledge S, Conolly J, Shennan S, Bellwood P, Bouby L, Hansen J, et al. Archaeobotanical evidence for the spread of farming in the Eastern Mediterranean 1. Curr Anthropol. 2004;45:S35–58.
Article
Google Scholar
Zeder MA. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci U S A. 2008;105:11597–604.
Article
CAS
Google Scholar
Alizadeh A. The rise of the highland Elamite state in southwestern Iran. Curr Anthropol. 2010;51:353–83.
Article
Google Scholar
Przezdziecki XJB, Paris G. Our levriers: the past, present and future of all sighthounds. France: Les Amis de Xavier Przezdziecki, La Colle-sur-Loup; 2001.
Google Scholar
VonHoldt BM, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902.
Article
CAS
Google Scholar
Amiri Ghanatsaman Z, Adeola AC, Asadi Fozi M, Ma YP, Peng MS, Wang GD, et al. Mitochondrial DNA sequence variation in Iranian native dogs. Mitochondrial DNA A DNA Mapp Seq Anal. 2017;17:1–9.
Google Scholar
Ardalan A, Kluetsch CF, Zhang AB, Erdogan M, Uhlén M, Houshmand M, et al. Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization. Ecol Evol. 2011;1:373–85.
Article
Google Scholar
Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016.
Article
Google Scholar
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, et al. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics. 2020;21:1–11.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce frame work for analyzing nextgeneration DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
Google Scholar
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.
Article
CAS
Google Scholar
Chen K, Wallis J, McLellan M, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6:677–81.
Article
CAS
Google Scholar
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9.
Article
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
Google Scholar
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic Acids Res. 2011;40:D84–90.
Article
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/bioproject/browse/PRJCA001183.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042720.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042721.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042722.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042723.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042724.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042725.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042726.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042727.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042728.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042729.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042730.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042731.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042732.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042733.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042734.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042735.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042736.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042737.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042738.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042739.
BIGD Genome Warehouse; 2020. https://bigd.big.ac.cn/gsa/browse/CRA001324/CRR042740.